Flow-injection chemiluminescence determination of penicillin antibiotics in drugs and human urine using luminol-Ag(III) complex system

Abstract

A chemiluminescent (CL) system based on the reaction of an Ag(III) complex with luminol in alkaline medium is presented. Gamma order of magnitude penicillin species antibiotics could dramatically enhance CL intensities. Coupled with flow injection analysis (FIA), a novel sensitive chemiluminescent analytical technique for some penicillin antibiotics in drugs and urine samples is introduced. Under optimum conditions, benzylpenicillin sodium, amoxicillin, ampicillin and cloxacillin sodium were determinated. Detection limits of this method are 70 ng/mL for benzylpenicillin sodium, 67 ng/mL for amoxicillin, 169 ng/mL for ampicillin and 64 ng/mL for cloxacillin sodium. For the spiked urine samples, the recoveries of the four drugs were in the range of 106–112% for benzylpenicillin sodium, 104–110% for amoxicillin, 104–106% for ampicillin, and 103–105% for cloxacillin sodium. Based on the fluorescence spectra, free radical trapping experiment, and chemiluminescent spectra, a possible reaction mechanism is suggested.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Bailón-Pérez, M.I., García-Campaía, A.M., Cruces-Blanco, C, and del Olmo Iruela, M., J. Chromatogr. A, 2008, vol. 1185, no. 2, p. 273.

    Article  Google Scholar 

  2. 2.

    Michalska, K., Pajchel, G., and Tyski, S.J., J. Chromatogr. B, 2004, vol. 800, no. 1–2, p. 203.

    Article  CAS  Google Scholar 

  3. 3.

    Ghassempour, A., Davarani, S.S.H., Noroozi, M., and Shamsipur, M., Talanta, 2005, vol. 65, no. 4, p. 1038.

    Article  CAS  Google Scholar 

  4. 4.

    Takeba, K., Fujinuma, K., Miyazaki, T., and Nakazawa, H., J. Chromatogr. A, 1998, vol. 812, no. 1–2, p. 205.

    Article  CAS  Google Scholar 

  5. 5.

    Babić, S., Ašperger, D., Mutavdžić, D., Horvat, A.J.M., and Kastelan-Macan, M., Talanta, 2006, vol. 70, no. 4, p. 732.

    Article  Google Scholar 

  6. 6.

    Ito, Y, Goto, T, Oka, H., Matsumoto, H., and Takeba, K., J. Chromatogr. A, 2004, vol. 1042, no. 1–2, p. 107.

    Article  CAS  Google Scholar 

  7. 7.

    Fernández-González, A., Badía, R., and Díaz-García, M.E., Anal. Chim. Acta, 2003, vol. 484, no. 2, p. 223.

    Article  Google Scholar 

  8. 8.

    Muñoz de la Peña, A., Acedo-Valenzuela, M.L., Espinosa-Mansilla, A., and Sánchez-Maqueda, R., Talanta, 2002, vol. 56, no. 6, p. 635.

    Article  Google Scholar 

  9. 9.

    Msagati, T.A.M. and Nindi, M.M., Food. Chem., 2007, vol. 100, no. 4, p. 836.

    Article  CAS  Google Scholar 

  10. 10.

    Kubo, H., Saitoh, M., Murase, S., Inomata, X., Yoshimura, Y., and Nakazawa, H., Anal. Chim. Acta, 1999, vol. 389, no. 1–3, p. 89.

    Article  CAS  Google Scholar 

  11. 11.

    Liu, W., Zhang, Z.J., and Liu. Z.Q., Anal. Chim. Acta, 2007, vol. 592, no. 2, p. 187.

    Article  CAS  Google Scholar 

  12. 12.

    Cao, W., Yang, J.H., Sun, C.X., Chen, Y.R, and Gao, Q.F., Luminescence, 2005, vol. 20, no. l, p. 20.

    Article  CAS  Google Scholar 

  13. 13.

    Cao, W., Yang, J.H., Sun, C.X., Zhang, Z.J., and Gao, Q.F., Luminescence, 2005, vol. 20, no. 4–5, p. 238.

    Article  CAS  Google Scholar 

  14. 14.

    Zhang, Z.J. and Liang, F.R., Chin. J. Anal. Labor., 2007, vol. 4, no. 26, p. 97.

    Google Scholar 

  15. 15.

    Pimentel Neves, A.I., Albert-Garcia, J.R., and Martinez Calatayud, J., Talanta, 2007, vol. 71, no. l, p. 318.

    Article  CAS  Google Scholar 

  16. 16.

    Li, S.L., Li, X.Z., Xu, J., and Wei, X.W., Talanta, 2008, vol. 75, no. l, p. 32.

    Article  CAS  Google Scholar 

  17. 17.

    Sun, Y.Y., Tang, Y.H., Yao, H., and Zheng, X.H., Talanta, 2004, vol. 64, no. l, p. 156.

    Article  CAS  Google Scholar 

  18. 18.

    Lara, F.J., Garciía-Campana, A.M., Gámiz-Gracia, L., Bosque-Sendra, J.M., and Alés-Barrero, E., Electrophoresis, 2006, vol. 27, no. 12, p. 2348.

    Article  CAS  Google Scholar 

  19. 19.

    Tsukagoshi, K., Kameda, T., Yamamoto, M., and Nakajima, R. J. Chromatogr. A, 2002, vol. 978, no. l–2, p. 213.

    Article  CAS  Google Scholar 

  20. 20.

    Zhao, S., Bai, W., Yuan, H., and Xiao, D., Anal. Chim. Acta, 2002, vol. 559, no. 2, p. 195.

    Article  Google Scholar 

  21. 21.

    Uzu, T. and Sasaki, S., Org. Lett., 2007, vol. 9, no. 21, p. 4383.

    Article  CAS  Google Scholar 

  22. 22.

    Lin, J.M., Chemiluminescence-Basic Principles and Applications. Beijing: Chemical Industry Publishing House, 2004. p. 42.

    Google Scholar 

  23. 23.

    Shi, H.M., Xu, X.D., Ding, Y.X., Liu, S.P., Li, L.Q., and Kang, W.J., Anal. Biochem., 2009, vol. 387, no. 2, p. 178.

    Article  CAS  Google Scholar 

  24. 24.

    Bai, J.B., Shi, H.M., Zhang, Y.Z., Tian, D.H., Xu, X.D., and Kang, W.J., Chin. J. Chem., 2009, vol. 27, no. 4, p. 745.

    Article  CAS  Google Scholar 

  25. 25.

    Shen, S.G., Shi, H.M., and Sun, H.W., Int. J. Chem. Kinet., vol. 39, no. 8, p. 440.

  26. 26.

    Blikungeri, A., Pelletier, M., and Monnier, D., Inorg. Chim. Acta, 1977, vol. 22, p. 7.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Li Ma.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ma, L., Kang, W.j., Xu, X.d. et al. Flow-injection chemiluminescence determination of penicillin antibiotics in drugs and human urine using luminol-Ag(III) complex system. J Anal Chem 67, 219–225 (2012). https://doi.org/10.1134/S1061934812030070

Download citation

Keywords

  • Ag(III) complex
  • chemiluminescence
  • benzylpenicillin sodium
  • amoxicillin
  • ampicillin