Journal of Analytical Chemistry

, Volume 65, Issue 13, pp 1388–1396 | Cite as

About the plausible contribution of field ionization in the mechanism of the formation of dyes of ions under conditions of laser desorption/ionization from a nanostructurized graphite surface

  • V. S. ShelkovskiiEmail author
  • M. V. Kosevich
  • V. V. Chagovets
  • O. A. Boryak
  • V. V. Orlov
  • S. V. Snegir’
  • I. V. Shmigol’
  • V. A. Pokrovskii


An approach is proposed for the estimation of the contribution of field ionization (FI) to the mechanism of dye ion formation under the conditions of laser desorption/ionization (LDI) from a nanostructurized graphite surface. As test systems, rough graphite layers with dyes, e.g., imidazophenazine derivatives applied to them were chosen; these ensure FI in a strong electric field. The dyes form three neutral precursors upon reduction and various types of ions in different ionization methods. It was found that the mass distribution within the group of peaks formed by the initial dye molecule and the products of its reduction in the positive ion mode upon LDI from a rough graphite surface is shifted to lower masses by one atomic mass unit in comparison to the distribution recorded for LDI from a smooth metal support. The analysis of plausible pathways of ion formation has shown that such a shift may be due to the superposition of ions formed by the FI mechanism on a graphite substrate with a number of ions formed by protonation in LDI with no dependence on the support type. In the negative ion mode, the registration of LDI dye spectra succeeded only if the graphite substrates used favored negative FI and electron emission enhanced by the field.


mass spectrometry laser desorption/ionization field ionization graphite dyes nanomaterials reduction reactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guo, Z., Ganawi, A.A.A., Liu, Q., and He, L., Anal. Bioanal. Chem, 2006, vol. 384, no. 3, p. 584.CrossRefGoogle Scholar
  2. 2.
    Lewis, W.G., Shen, Z., Finn, M.G., and Siuzdak, G., Int. Mass Spectrom, 2003, vol. 226, no. 1, p. 107.CrossRefGoogle Scholar
  3. 3.
    Sunner, J., Dratz, E., and Chen, Y.-C., Anal. Chem., 1995, vol. 67, no. 23, p. 4335.CrossRefGoogle Scholar
  4. 4.
    Beckey, H.D., Principles of Field Ionization and Field Desorption Mass Spectrometry, London: Pergamon, 1977.Google Scholar
  5. 5.
    Korol’, E.N., Lobanov, V.V., Nazarenko, V.A., and Pokrovskii, V.A., Fizicheskie osnovy polevoi mass-spektrometrii (Principal Physics of Field Mass Spectrometry), Kiev: Naukova Dumka, 1978.Google Scholar
  6. 6.
    Alimpiev, S., Nikiforov, S., Karavanskii, V., Minton, T., and Sunner, J., J. Chem. Phys., 2001, vol. 115, no. 4, p. 1891.CrossRefGoogle Scholar
  7. 7.
    Alimpiev, S., Grechnikov, A., Sunner, J., Karavanskii, V., Simanovsky, Ya., Zhabin, S., and Nikiforov, S., J. Chem. Phys., 2008, vol. 128, no. 1, p. 014711.CrossRefGoogle Scholar
  8. 8.
    Terebinskaya, M.I., Shmigol’, I.N., Pokrovskii, V.A., and Lobanov, V.V., Abstracts of Papers, Nanorazmernye sistemy (Nanoscale Systems), Kiev, 2007, p. 522.Google Scholar
  9. 9.
    Migahed, M.D. and Beckey, H.D., Int. J. Mass Spectrom. Ion Phys., 1971, vol. 7, no. 1, p. 1.CrossRefGoogle Scholar
  10. 10.
    Beckey, H.D., J. Phys., E, 1979, vol. 12, no. 2, p. 72.CrossRefGoogle Scholar
  11. 11.
    Winkler, H.U. and Beckey, H.D., Org. Mass Spectrom., 1973, vol. 7, no. 8, p. 1007.CrossRefGoogle Scholar
  12. 12.
    Schulten, H.-R., Lehmann, W.D., and Haaks, D., Org. Mass Spectrom., 1978, vol. 13, no. 6, p. 361.CrossRefGoogle Scholar
  13. 13.
    Schulten, H.-R., Monkhouse, P.B., and Müller, R., Anal. Chem., 1982, vol. 54, no. 4, p. 654.CrossRefGoogle Scholar
  14. 14.
    Tottszer, A.I., Neumann, G.M., Derrick, P.J., and Willett, G.D., J. Phys., D, 1988, vol. 21, no. 12, p. 1713.CrossRefGoogle Scholar
  15. 15.
    Tsong, T.T., Phys. Rev., B, 1984, vol. 30, no. 9, p. 4946.CrossRefGoogle Scholar
  16. 16.
    Egorov, S.E., Letokhov, V.S., and Moskovets, E.V., Appl. Phys., B, 1988, vol. 45, no. 1, p. 53.CrossRefGoogle Scholar
  17. 17.
    Moskovets, E.V. and Letokhov, V.S., Surf. Sci., 1992, vol. 266, nos. 1–3, p. 81.CrossRefGoogle Scholar
  18. 18.
    Kosevich, M.V. and Shelkovsky, V.S., Rapid Commun. Mass Spectrom., 1993, vol. 7, no. 9, p. 805.CrossRefGoogle Scholar
  19. 19.
    Kosevich, M.V., Pashinskaya, V.A., and Shelkovsky, V.S., Org. Mass Spectrom., 1994, vol. 29, no. 9, p. 458.CrossRefGoogle Scholar
  20. 20.
    Black, C., Poile, C., Langley, J., and Herniman, J., Rapid Commun. Mass Spectrom., 2006, vol. 20, no. 7, p. 1053.CrossRefGoogle Scholar
  21. 21.
    Berger-Nicoletti, E., Wurm, F., Kilbinger, F.M., and Frey, H., Macromolecules, 2007, vol. 40, no. 3, p. 746.CrossRefGoogle Scholar
  22. 22.
    Langley, G.J., Herniman, J.M., and Townell, M.S., Rapid Commun. Mass Spectrom., 2007, vol. 21, no. 2, p. 180.CrossRefGoogle Scholar
  23. 23.
    Kosevich, M.V., Boryak, O.A., Orlov, V.V., Shelkovsky, V.S., Chagovets, V.V., Stepanian, S.G., Karachevtsev, V.A., and Adamowisz, L., J. Mass Spectrom., 2006, vol. 41, no. 1, p. 113.CrossRefGoogle Scholar
  24. 24.
    Kosevich, M.V., Chagovets, V.V., Shmigol, I.V., Snegir, S.V., Boryak, O.A., Orlov, V.V., Shelkovsky, V.S., Pokrovskiy, V.A., and Gomory, A., J. Mass Spectrom., 2008, vol. 43, no. 11, p. 1402.CrossRefGoogle Scholar
  25. 25.
    Pelzer, G., Pauw, E.De., Dao, V.D., and Marient, J., J. Phys. Chem., 1984, vol. 88, no. 21, p. 5065.CrossRefGoogle Scholar
  26. 26.
    Cerny, R.L. and Gross, M.L., Anal. Chem., 1985, vol. 57, no. 6, p. 1160.CrossRefGoogle Scholar
  27. 27.
    Hillenkamp, F. and Peter-Katalinic, J., MALDI MS. A Practical Guide to MALDI-MS: Instrumentation, Methods, and Applications, Weinheim: Wiley, 2007.Google Scholar
  28. 28.
    Detter, L.D., Hand, O.W., Cooks, R.G., and Walton, R.A., Mass Spectrom. Rev., 1988, vol. 7, no. 5, p. 465.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. S. Shelkovskii
    • 1
    Email author
  • M. V. Kosevich
    • 1
  • V. V. Chagovets
    • 1
  • O. A. Boryak
    • 1
  • V. V. Orlov
    • 1
  • S. V. Snegir’
    • 2
  • I. V. Shmigol’
    • 2
  • V. A. Pokrovskii
    • 2
  1. 1.Institute for Low Temperature Physics and EngineeringNational Academy of Sciences of UkraineKharkivUkraine
  2. 2.Institute of Surface ChemistryNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations