Advertisement

Journal of Analytical Chemistry

, Volume 65, Issue 13, pp 1382–1387 | Cite as

Modern Russian mass spectrometers for the atomic industry

  • N. R. Kuzelev
  • A. S. Shtan’
  • G. I. Kiryanov
  • L. N. Gall’
  • A. P. Knutarev
  • G. S. Solov’ev
  • A. V. Saprygin
  • V. A. KalashnikovEmail author
  • D. V. Novikov
  • A. B. Maleev
  • V. A. Borodin
  • V. G. Gorbunov
  • Zh. A. Savina
  • A. P. Ivanov
Articles
  • 51 Downloads

Abstract

Product quality control within the nuclear fuel cycle is a subject of special concern in Russia nowadays. Earlier, mass spectrometers of foreign production were commonly used for elemental and isotope analysis of samples. Currently, a series of domestic mass spectrometers MTI-350 has been developed and their production has been organized in Russia. The series comprises an automated MTI-350G mass spectrometer for the isotope analysis of uranium hexafluoride; thermal ionization MTI-350T mass spectrometer for the isotope analysis of uranium, plutonium, and mixed oxide (MOX) fuels; an MTI-350GS mass spectrometer for controlling the production of uranium hexafluoride; and an MTI-350GP mass spectrometer for the determination of the impurity concentration in uranium hexafluoride. The article considers operation principles, analytical characteristics, and the advantages of the above mass spectrometers.

Keywords

mass spectrometer MTI-350 MI-1201 nuclear fuel cycle uranium hexafluoride mixed-oxide (MOX) fuel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lebedev, V.M., Yadernyi toplivnyi tsikl: Tekhnologii, bezopasnost’, ekonomika (Nuclear Fuel Cycle: Technologies, Safety, Econimics), Moscow: Energoatomizdat, 2005.Google Scholar
  2. 2.
    Shtan’, A.S., Kir’yanov, G.I., Saprygin, A.V., Kalashnikov, V.A., Zalesov, Yu.N., Maleev, A.B., Novikov, D.V., Gall’, L.N., Manoilov, V.V., Sachenko, V.D., Khasin, Yu.I., Ivanov, A.P., Lednev, V.A., and Gorbunov, V.G., At. Energ., 2004, vol. 96, no. 1, p. 49.Google Scholar
  3. 3.
    Gall’, L.N., Sachenko, V.D., Lednev, V.A., Berdnikov, A.S., Vasil’ev, V.A., Ivanov, A.P., and Kalashnikov, V.A., Nauchn. priborostr., 2001, vol. 11, no. 4, p. 21.Google Scholar
  4. 4.
    Saprygin, A.V., Maleev, A.B., and Novikov, D.V., Analitika i kontrol’, 2003, vol. 7, no. 4, p. 386.Google Scholar
  5. 5.
    Saprygin, A.V., Kalashnikov, V.A., Zalesov, Yu.N., Novikov, D.V., and Maleev, A.B., Analitika i kontrol’, 2003, vol. 7, no. 4, p. 412.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • N. R. Kuzelev
    • 1
  • A. S. Shtan’
    • 1
  • G. I. Kiryanov
    • 1
  • L. N. Gall’
    • 2
  • A. P. Knutarev
    • 3
  • G. S. Solov’ev
    • 3
  • A. V. Saprygin
    • 3
  • V. A. Kalashnikov
    • 3
    Email author
  • D. V. Novikov
    • 3
  • A. B. Maleev
    • 3
  • V. A. Borodin
    • 4
  • V. G. Gorbunov
    • 4
  • Zh. A. Savina
    • 4
  • A. P. Ivanov
    • 5
  1. 1.Open Society Research Institute of Technical Physics and Automation, RussiaMoscowRussia
  2. 2.Institute of Analytical Instrument MakingRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Urals Electrochemical Combine Joint-Stock CompanyNovouralskRussia
  4. 4.Experimental Plant of Scientific Instrument MakingRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  5. 5.Special Design Bureau Spektron-Analit Joint-Stock CompanySt. PetersburgRussia

Personalised recommendations