Advertisement

Journal of Analytical Chemistry

, Volume 65, Issue 13, pp 1377–1381 | Cite as

Application of temperature programmed desorption mass spectrometry for the determination of the deacetylation degree of chitosan

  • T. V. Borodavka
  • T. V. KulikEmail author
  • B. B. Palyanytsya
Articles

Abstract

Curves representing the dependence of the pressure of volatile products formed in the destruction of chitin or chitosan on the thermolysis temperature were analyzed. The curves were obtained using temperature programmed desorption mass spectrometry. It was shown that the shape and positions of the maxima in the curves depend on the ratio of the numbers of pyranose rings bearing amine and acetamide groups in the polymer chain. A new approach was proposed for determining the deacetylation degree of chitin or chitosan based on the data of temperature programmed desorption mass spectrometry.

Keywords

temperature-programmed mass spectrometry chitosan chitin thermolysis degree of deacetylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skryabin, K.G., Vikhoreva, G.A., and Varlamov, V.P., Khitin i khitozan: Poluchenie, svoistva i primenenie (Chitin and Chitosan: Production, Properties and Applications), Moscow: Nauka, 2002.Google Scholar
  2. 2.
    Kumar, M.N.V.R., React. Funct. Polym., 2000, vol. 46, no. 1, p. 1.CrossRefGoogle Scholar
  3. 3.
    Kumar, M.N.V.R., Muzzarelli, R.A., Muzzarelli, C., Sashiwa, H., and Domb, A.J., Chem. Rev., 2004, vol. 104, no. 12, p. 6017.CrossRefGoogle Scholar
  4. 4.
    Gamzazade, A.I., Doctoral (Chem.) Dissertation, Moscow, 2005.Google Scholar
  5. 5.
    Tanveer, A.K., Kok, K.P., and Hung, S.Ch., J. Pharm. Pharmaceut. Sci., 2002, vol. 5, no. 3, p. 205.Google Scholar
  6. 6.
    Balazs, N. and Sipos, P., Carbohydr. Res., 2007, vol. 342, no. 1, p. 124.CrossRefGoogle Scholar
  7. 7.
    Jiang, X., Chen, L.M., and Zhong, W., Carbohydr. Res., 2003, vol. 54, no. 4, p. 457.CrossRefGoogle Scholar
  8. 8.
    Kasaai, M.R., Carbohydr. Res., 2008, vol. 71, no. 4, p. 497.CrossRefGoogle Scholar
  9. 9.
    Duarte, M.L., Ferreira, M.C., Marvao, M.R., and Rocha, J., Int. J. Biol. Macromol., 2002, vol. 31, nos. 1–3, p. 1.CrossRefGoogle Scholar
  10. 10.
    Baxter, A., Dillon, M., Taylor, K.D., and Roberts, G.A., Int. J. Biol. Macromol., 1992, vol. 14, no. 3, p. 166.CrossRefGoogle Scholar
  11. 11.
    Hirai, A., Odani, H., and Nakajima, A., Polym. Bull., 1991, vol. 26, p. 87.CrossRefGoogle Scholar
  12. 12.
    Fernandez-Megia, E., Novoa-Carballal, R., Quinoa, E., and Riguera, R., Carbohydr. Res., 2005, vol. 61, no. 2, p. 155.CrossRefGoogle Scholar
  13. 13.
    Lavertu, M., Xia, Z., Serreqi, A.N., Berrada, M., Rodrigues, A., Wang, D., Buschmann, M.D., and Gupta, A., J. Pharm. Biomed. Anal., 2003, vol. 32, no. 6, p. 1149.CrossRefGoogle Scholar
  14. 14.
    Varum, K.M., Anthonsen, M.W., Grasdalen, H., and Smidsrod, O., Carbohydr. Res., 1991, vol. 217, no. 2, p. 19.CrossRefGoogle Scholar
  15. 15.
    Duarte, M.L., Ferreira, M.C., Marvao, M.R., and Rocha, J., Int. J. Biol. Macromol., 2001, vol. 28, no. 5, p. 359.CrossRefGoogle Scholar
  16. 16.
    Kulik, T.V., Palyanitsa, B.B., Borodavka, T.V., and Sklyar, A.M., Mass-Spektrometria, 2006, vol. 3, no. 3, p. 175.Google Scholar
  17. 17.
    Gal’braikh, L.S., Sorovskii obrazovat. zhurn., 2001, vol. 7, no. 1, p. 51.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • T. V. Borodavka
    • 1
  • T. V. Kulik
    • 1
    Email author
  • B. B. Palyanytsya
    • 1
  1. 1.Chuiko Institute of Surface ChemistryNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations