Advertisement

Journal of Analytical Chemistry

, Volume 65, Issue 13, pp 1295–1310 | Cite as

Mass spectrometric analysis of protein phosphorylation

  • E. D. Kan’shinEmail author
  • I. E. Nifant’ev
  • A. V. Pshezhetskii
Reviews

Abstract

Phosphorylation is one of the most common posttranslational modifications of proteins in eukaryotic cells; it plays an important role in a wide spectrum of biological processes. This makes its study an important task for understanding cell functioning mechanisms. The aim of phosphoproteomics is a global mass spectral analysis of the phosphoprotein composition of cells, i.e., phosphoproteome. Nowadays, new effective methods are actively developed, which succeed not only in the detection of phosphorylated proteins but also in the determination of phosphorylated amino acid residues (phosphorylation sites) and in the quantitative comparison of phosphorylation among several specimens. Despite the analysis of protein phosphorylation remains a complicated problem, the available methods nowadays allow the detection of thousands of phosphorylation sites in the very same experiment. The present review covers the main methods utilized in contemporary phosphoproteomics: phosphoprotein and phosphopeptides enrichment as well as the mass spectrometric analysis of protein phosphorylation.

Keywords

phosphoproteomics mass spectrometry phosphoprotein enrichment peptide enrichment 

Abbreviations Used

IMAC

immobilized metal affinity chromatography

MOAC

metal oxide affinity chromatography

SCX

strong cation-exchange chromatography

ICAT

isotopically coded affinity tags

iTRAQ

isobaric tags for relative and absolute quantification (of proteins)

HPLC

high-performance liquid chromatography

ESI

electrospray ionization

MALDI

matrix-assisted laser desorption/ionization

CID

collision induced dissociation, fragmentation due to collisions with neutral atoms

ETD

electron transfer dissociation, fragmentation due to transfer of electron

ECD

electron capture ionization, fragmentation due to electron capture

FT-ICR

fourier transform-ion cyclotron resonance

PAIs

protein abundant indices, co-efficients of proteins’ abundance.

SILAC

stable isotope labelling with amino acids in cell culture, insertion of tags due to addition of isotopically-labelled amino acids into cell culture.

PhIAT

phosphoprotein isotope-coded affinity tag.

PhIST

phosphoprotein isotope-coded solid-phase tag.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kalume, D.E., Molina, H., and Pandey, A., Curr. Opin. Chem. Biol., 2003, vol. 7, no.1, p. 64.CrossRefGoogle Scholar
  2. 2.
    Johnson, S.A. and Hunter, T., Nat. Methods, 2005, vol. 2, no.1, p. 17.CrossRefGoogle Scholar
  3. 3.
    Sickmann, A. and Meyer, H.E., Proteomics, 2001, vol. 1, no.2, p. 200.CrossRefGoogle Scholar
  4. 4.
    Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., et al., Cell, 2006, vol. 127, no.3, p. 635.CrossRefGoogle Scholar
  5. 5.
    Zhou, M. and Veenstra, T., Biotechniques, 2008, vol. 44, no.4, p. 670.CrossRefGoogle Scholar
  6. 6.
    Ham, B.M., Yang, F., Jayachandran, H., Jaitly, N., et al., J. Proteome Res., 2008, vol. 7, no.6, p. 2215.CrossRefGoogle Scholar
  7. 7.
    Issaq, H. and Veenstra, T., Biotechniques, 2008, vol. 44, no.5, p. 697.CrossRefGoogle Scholar
  8. 8.
    Van den Bergh, G. and Arckens, L., Methods Mol. Biol., 2008, vol. 424, p. 147.CrossRefGoogle Scholar
  9. 9.
    Huck, C.W. and Bonn, G.K., Methods Mol. Biol., 2008, vol. 384, p. 507.CrossRefGoogle Scholar
  10. 10.
    Dolník, V., Electrophoresis, 2008, vol. 29, no.1, p. 143.CrossRefGoogle Scholar
  11. 11.
    Hunter, T., Cell, 1995, vol. 83, no.1, p. 1.CrossRefGoogle Scholar
  12. 12.
    Schlessinger, J., The Harvey Lectures, Ser.: 89, 1993, p. 105.Google Scholar
  13. 13.
    Hemmings, Jr. H.C., Neuromethods, 1996, vol. 30, p. 121.Google Scholar
  14. 14.
    Gruhler, A., Olsen, J.V., Mohammed, S., Martensen, P., et al., Mol. Cell Proteomics, 2005, vol. 4, no.3, p. 310.CrossRefGoogle Scholar
  15. 15.
    Mann, M., Ong, S.E., Gronborg, M., Steen, H., et al., Trends Biotechnol., 2002, vol. 20, no.6, p. 261.CrossRefGoogle Scholar
  16. 16.
    Zhang, H., Zha, X., Tan, Y., Hornbeck, P.V., et al., J. Biol. Chem., 2002, vol. 277, no.42, p. 39379.CrossRefGoogle Scholar
  17. 17.
    Hattori, S., Lida, N., and Kosako, H., Expert Rev. Proteomics, 2008, vol. 5, no.3, p. 497.CrossRefGoogle Scholar
  18. 18.
    Gronborg, M., Kristiansen, T.Z., Stensballe, A., Andersen, J.S., et al., Mol. Cell Proteomics, 2002, vol. 1, no.7, p. 517.CrossRefGoogle Scholar
  19. 19.
    Steen, H., Kuster, B., Fernandez, M., Pandey, A., and Mann, M., J. Biol. Chem., 2002, vol. 277, no.2, p. 1031.CrossRefGoogle Scholar
  20. 20.
    Bergström, L.S., Molin, M., Savitski, M.M., Emilsson, L., et al., J. Proteome Res., 2008, vol. 7, no.7, p. 2897.CrossRefGoogle Scholar
  21. 21.
    Sugiyama, N., Nakagami, H., Mochida, K., Daudi, A., Tomita, M., Shirasu, K., and Ishihama, Y., Mol. Syst. Biol., 2008, vol. 4, p. 193.CrossRefGoogle Scholar
  22. 22.
    Villen, J., Beausoleil, S.A., Gerber, S.A., and Gygi, S.P., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no.5, p. 1488.CrossRefGoogle Scholar
  23. 23.
    Ficarro, S., Chertihin, O., Westbrook, V.A., White, F., et al., J. Biol. Chem., 2003, vol. 278, no.13, p. 11579.CrossRefGoogle Scholar
  24. 24.
    Porath, J., Carlsson, J., Olsson, I., and Belfrage, G., Nature, 1975, vol. 258, no.5536, p. 598.CrossRefGoogle Scholar
  25. 25.
    Michel, H.P. and Bennett, J., J. Biol. Chem., 1987, vol. 263, no.3, p. 1123.Google Scholar
  26. 26.
    Li, Y., Lin, H., Deng, C., Yang, P., and Zhang, X., Proteomics, 2008, vol. 8, no.2, p. 238.CrossRefGoogle Scholar
  27. 27.
    Liu, H.L., Ho, Y., and Hsu, C.M., J. Biomol. Struct. Dyn., 2003, vol. 21, no.1, p. 31.Google Scholar
  28. 28.
    Nuhse, T.S., Stensballe, A., Jensen, O.N., and Peck, S.C., Mol. Cell. Proteomics, 2003, vol. 2, no.11, p. 1234.CrossRefGoogle Scholar
  29. 29.
    Posewitz, M.C. and Tempst, P., Anal. Chem., 1999, vol. 71, no.14, p. 2883.CrossRefGoogle Scholar
  30. 30.
    Ficarro, S.B., McCleland, M.L., Stukenberg, P.T., Burke, D.J., et al., Nat. Biotechnol, 2002, vol. 20, no.3, p. 301.CrossRefGoogle Scholar
  31. 31.
    Kånge, R., Selditz, U., Granberg, M., Lindberg, U., Ekstrand, G., and Gustafsson, M., J. Biomol. Tech., 2005, vol. 16, no.2, p. 91.Google Scholar
  32. 32.
    Machida, M., Kosako, H., Shirakabe, K., Kobayashi, M., Ushiyama, M., Inagawa, J., Hirano, J., Nakano, T., Bando, Y., Nishida, E., and Hattori, S., FEBS J., 2007, vol. 274, no.6, p. 1576.CrossRefGoogle Scholar
  33. 33.
    Collins, M.O., Yu, L., Husi, H., Blackstock, W.P., et al., Sci. STKE, 2005, vol. 298, p. 6.Google Scholar
  34. 34.
    Collins, M.O., Yu, L., Coba, M.P., Husi, H., et al., J. Biol. Chem., 2005, vol. 280, no.7, p. 5972.CrossRefGoogle Scholar
  35. 35.
    Gutillas, P.R., Geering, B., Waterfield, M.D., and Vanhaesebroeck, B., Mol. Cell Proteomics, 2005, vol. 4, no.8, p.1038.CrossRefGoogle Scholar
  36. 36.
    Thingholm, T.E., Jensen, O.N., Robinson, P.J., and Larsen, M.R., Mol. Cell Proteomics, 2008, vol. 7, no.4, pp. 661.Google Scholar
  37. 37.
    Riggs, L., Sioma, C., and Regnier, F.E., J. Chromatogr. A, 2001, vol. 924, nos. 1–2, p. 359.CrossRefGoogle Scholar
  38. 38.
    Raska, C.S., Parker, C.E., Dominski, Z., and Marzluff, W.F., Anal. Chem., 2002, vol. 74, no.14, p. 3429.CrossRefGoogle Scholar
  39. 39.
    Pinkse, M.W., Uitto, P.M., Hilhorst, M.J., Ooms, B., and Heck, A.J., Anal. Chem., 2004, vol. 76, no.14, p. 3935.CrossRefGoogle Scholar
  40. 40.
    Li, Y., Xu, X., Qi, D., Deng, C., Yang, P., and Zhang, X., J. Proteome Res., 2008, vol. 7, no.6, p. 2526.CrossRefGoogle Scholar
  41. 41.
    Mohammed, S., Kraiczek, K., Pinkse, M.W.H., Lemeer, S., Benschop, J.J., and Heck, A.J.R., J. Proteome Res., 2008, no.4, p. 1565.Google Scholar
  42. 42.
    Larsen, M.R., Thingholm, T.E., Jensen, O.N., Roepstorff, P., and Jorgensen, T.J., Mol. Cell Proteomics, 2005, vol. 4, no.7, p. 873.CrossRefGoogle Scholar
  43. 43.
    Kweon, H.K. and Hakansson, K., Anal. Chem., 2006, vol. 78, no.6, p. 1743.CrossRefGoogle Scholar
  44. 44.
    Wolschin, F., Wienkoop, S., and Weckwerth, W., Proteomics, 2005, vol. 5, no.17, p. 4389.CrossRefGoogle Scholar
  45. 45.
    Ficarro, S.B., Parikh, J.R., Blank, N.C., and Marto, J.A., Anal. Chem., 2008, vol. 80, no.12, p. 4606.CrossRefGoogle Scholar
  46. 46.
    Jensen, S.S. and Larsen, M.R., Rapid Commun. Mass Spectrom., 2007, vol. 21, p. 3635.CrossRefGoogle Scholar
  47. 47.
    Kweon, H.K. and Håkansson, K., Anal. Chem., 2006, vol. 78, no.6, p. 1743.CrossRefGoogle Scholar
  48. 48.
    Kan’shin, E.D., Nifant’ev, I.E., and Pshezhetskii, A.V., Mass-spektrometria, 2008, vol. 5, no.3, p. 195.Google Scholar
  49. 49.
    Bodenmiller, B., Mueller, L.N., Mueller, M., Domon, B., and Aebersold, R., Nat. Methods, 2007, vol. 4, no.3, p. 231.CrossRefGoogle Scholar
  50. 50.
    Yu, L.-R., Zhu, Z., Chan, K.C., Issaq, H.J., Dimitrov, D.S., and Veenstra, T.D., J. Proteome Res., 2007, vol. 6, no.11, p. 4150.CrossRefGoogle Scholar
  51. 51.
    Link, A.J., Fng, J., Schieltz, D.M., Carmack, E., et al., Nat. Biotechnol, 1999, vol. 17, no.7, p. 676.CrossRefGoogle Scholar
  52. 52.
    Beausoleil, S.A., Jedrychowski, M., Schwartz, D., Elias, J.E., et al., Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no.33, p. 12130.CrossRefGoogle Scholar
  53. 53.
    Trinidad, J.C., Specht, C.G., Thalhammer, A., Schoepfer, R., and Burlingame, A.L., Mol. Cell Proteomics, 2006, vol. 5, no.5, p. 914.CrossRefGoogle Scholar
  54. 54.
    Zhai, B., Villén, J., Beausoleil, S.A., Mintseris, J., and Gygi, S.P., J. Proteome Res., 2008, vol. 7, no.4, p. 1675.CrossRefGoogle Scholar
  55. 55.
    Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., et al., Cell, 2008, vol. 127, no.3, p. 635.CrossRefGoogle Scholar
  56. 56.
    Sui, S., Wang, J., Yang, B., Song, L., Zhang, J., Chen, M., Liu, J., Lu, Z., Cai, Y., Chen, S., Bi, W., Zhu, Y., He, F., and Quan, X., Proteomics, 2008, vol. 8, no.10, p. 2024.CrossRefGoogle Scholar
  57. 57.
    Jaffe, H. and Veeranna, H.C., Biochemistry, 1998, vol. 37, no.46, p. 16211.CrossRefGoogle Scholar
  58. 58.
    Oda, Y., Nagasu, T., and Chait, B.T., Nat. Biotechnol, 2001, vol. 19, no.4, p. 379.CrossRefGoogle Scholar
  59. 59.
    Zhou, H., Watts, D., and Aebersold, R., A Nat. Biotechnol., 2001, vol. 19, no.4, p. 375.CrossRefGoogle Scholar
  60. 60.
    Tao, W.A., Wollscheid, B., O’Brien, R., Eng, J.K., et al., Nat. Methods, 2005, vol. 2, no.8, p. 591.CrossRefGoogle Scholar
  61. 61.
    Bodenmiller, B., Mueller, L.N., Pedrioli, P.G., Pflieger, D., et al., Mol. Biosyst., 2007, vol. 3, no.4, p. 275.CrossRefGoogle Scholar
  62. 62.
    Domon, B. and Aebersold, R., Science, 2006, vol. 312, no.5771, p. 212.CrossRefGoogle Scholar
  63. 63.
    Loyet, K.M., Stults, J.T., and Arnott, D., Mol. Cell Proteomics, 2003, vol. 4, no.3, p. 235.Google Scholar
  64. 64.
    McHugh, L. and Arthur, J.W., PLoS Comput. Biol., 2008, vol. 4, no.2, p. 12.CrossRefGoogle Scholar
  65. 65.
    Ducret, A., Van Oostveen, I., Eng, J.K., Yates, J.R., and Aebersold, R., Protein Sci., 1998, vol. 7, no.3, p. 706.CrossRefGoogle Scholar
  66. 66.
    Perkins, D.N., Pappin, D.J., Creasy, D.M., and Cottrell, J.S., Electrophoresis, 1999, vol. 20, no.18, p. 3551.CrossRefGoogle Scholar
  67. 67.
    Yang, X., Wu, H., Kobayashi, T., Solaro, R.J., and van Breemen, R.B., Anal. Chem., 2004, vol. 76, no.5, p. 1532.CrossRefGoogle Scholar
  68. 68.
    Ibanez, A.J., Muck, A., and Svatos, A., J. Proteome Res., 2007, vol. 6, no.9, p. 3842.CrossRefGoogle Scholar
  69. 69.
    Zubarev, R.A., Zubarev, A.R., and Savitski, M.M., J. Am. Soc. Mass Spectrom., 2008, vol. 19, no.6, p. 753.CrossRefGoogle Scholar
  70. 70.
    Cooper, H.J., Hakansson, K., and Marshall, A.G., Mass Spectrom. Rev., 2005, vol. 24, no.2, p. 201.CrossRefGoogle Scholar
  71. 71.
    Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J., and Hunt, D.F., Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no.26, p. 9528.CrossRefGoogle Scholar
  72. 72.
    Zubarev, R.A., Curr. Opin Biotechnol., 2004, vol. 15, no.1, p. 12.CrossRefGoogle Scholar
  73. 73.
    Stensballe, A., Jensen, O.N., Olsen, J.V., Haselmann, K.F., and Zubarev, R.A., Rapid Commun. Mass Spectrom., 2000, vol. 14, no.19, p. 1793.CrossRefGoogle Scholar
  74. 74.
    Rand, K.D., Adams, C.M., Zubarev, R.A., and Jørgensen, T.J., J. Am. Chem. Soc., 2008, vol. 130, no.4, p. 1341.CrossRefGoogle Scholar
  75. 75.
    Sweet, S.M., Creese, A.J., and Cooper, H.J., Anal. Chem., 2006, vol. 78, no.21, p. 7563.CrossRefGoogle Scholar
  76. 76.
    Chi, A., Huttenhower, C., Geer, L.Y., Coon, J.J., et al., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no.7, p. 2193.CrossRefGoogle Scholar
  77. 77.
    Molina, H., Horn, D.M., Tang, N., Mathivanan, S., and Pandey, A., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no.7, p. 2199.CrossRefGoogle Scholar
  78. 78.
    Swaney, D.L., McAlister, G.C., Wirtala, M., Schwartz, J.C., et al., Anal. Chem., 2007, vol. 79, no.2, p. 477.CrossRefGoogle Scholar
  79. 79.
    Wu, S.-L., Huhmer, A.F.R., Hao, Z., and Karger, B.L., J. Proteome Res., 2008, vol. 6, no.11, p. 4230.CrossRefGoogle Scholar
  80. 80.
    Olsen, J.V. and Mann, M., Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no.37, p. 13417.CrossRefGoogle Scholar
  81. 81.
    Schroeder, M.J., Shabanowitz, J., Schwartz, J.C., Hunt, D.F., and Coon, J.J., Anal. Chem., 2004, vol. 76, no.13, p. 3590.CrossRefGoogle Scholar
  82. 82.
    Zappacosta, F., Huddleston, M.J., Karcher, R.L., Gelfand, V.I., et al., Anal. Chem., 2002, vol. 74, no.13, p. 3221.CrossRefGoogle Scholar
  83. 83.
    Williamson, B.L., Marchese, J., and Morrice, N.A., Mol. Cell Proteomics, 2006, vol. 5, no.2, p. 337.Google Scholar
  84. 84.
    Steen, H., Kuster, B., and Mann, M., J. Mass Spectrom., 2001, vol. 36, no.7, p. 782.CrossRefGoogle Scholar
  85. 85.
    Larsen, M.R., Seornsen, G.L., Fey, S.J., and Larsen, P.M., Proteomics, 2001, vol. 1, no.2, p. 223.CrossRefGoogle Scholar
  86. 86.
    Steen, H., Jebanathirajah, J.A., Springer, M., and Kirschner, M.W., Proc. Natl. Acad. Sci. USA, 2005, vol. 120, no.11, p. 3948.CrossRefGoogle Scholar
  87. 87.
    Bonenfant, D., Schmelzle, T., Jacinto, E., Crespo, J.L., Mini, T., Hall, M.N., and Jenoe, P., Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no.3, p. 880.CrossRefGoogle Scholar
  88. 88.
    Hegeman, A.D., Harms, A.C., Sussman, M.R., Bunner, A.E., and Harper, J.F., J. Am. Soc. Mass Spectrom., 2003, vol. 15, no.5, p. 647.CrossRefGoogle Scholar
  89. 89.
    Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W., and Gygi, S.P., Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no.12, p. 6940.CrossRefGoogle Scholar
  90. 90.
    Putz, S., Reinders, J., Reinders, Y., and Sickmann, A., Expert Rev. Proteomics, 2005, vol. 2, no.3, p. 381.CrossRefGoogle Scholar
  91. 91.
    Ong, S.E. and Mann, M., Nat. Chem. Biol, 2005, vol. 1, no.5, p. 252.CrossRefGoogle Scholar
  92. 92.
    Ding, S.J., Qian, W.J., and Smith, R.D., Expert Rev. Proteomics, 2007, vol. 4, no.1, p. 13.CrossRefGoogle Scholar
  93. 93.
    Aggarwal, K., Choe, L.H., and Lee, K.H., Brief Funct. Genomic Proteomic, 2006, vol. 5, no.2, p. 112.CrossRefGoogle Scholar
  94. 94.
    Unwin, R.D., Evans, C.A., and Whetton, A.D., Trends Biochem. Sci., 2006, vol. 31, no.8, p. 473.CrossRefGoogle Scholar
  95. 95.
    Chen, X., Sun, L., Yu, Y., Xue, Y., and Yang, P., Expert Rev. Proteomics, 2007, vol. 4, no.1, p. 25.CrossRefGoogle Scholar
  96. 96.
    Mann, M., Nat/Rev. Mol. Cell Biol, 2006, vol. 7, no.12, p. 952.CrossRefGoogle Scholar
  97. 97.
    Ono, M., Shitashige, M., Honda, K., Isobe, T., et al., Mol. Cell Proteomics, 2006, vol. 5, no.7, p. 1338.CrossRefGoogle Scholar
  98. 98.
    Rinner, O., Mueller, L.N., Hubalek, M., Muller, M., et al., Nat. Biotechnol., 2007, vol. 25, no.3, p. 345.CrossRefGoogle Scholar
  99. 99.
    Steen, H., Jebanathirajah, J.A., Springer, M., and Kirschner, M.W., Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no.11, p. 3948.CrossRefGoogle Scholar
  100. 100.
    Rappsilber, J., Ryder, U., Lamond, A.I., and Mann, M., Genome Res., 2002, vol. 12, no.8, p. 1231.CrossRefGoogle Scholar
  101. 101.
    Ishihama, Y., Oda, Y., Tabata, T., Sato, T., et al., Mol. Cell Proteomics, 2005, vol. 4, no.9, p. 1265.CrossRefGoogle Scholar
  102. 102.
    Oda, Y., Huang, K., Cross, F.R., Cowburn, D., and Chait, B.T., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, no.12, p. 6591.CrossRefGoogle Scholar
  103. 103.
    Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., et al., Mol. Cell Proteomics, 2002, vol. 1, no.5, p. 376.CrossRefGoogle Scholar
  104. 104.
    Ibarrola, N., Kalume, D.E., Gronborg, M., Iwahori, A., and Pandey, A., Anal. Chem., 2003, vol. 75, no.22, p. 6043.CrossRefGoogle Scholar
  105. 105.
    Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem, M., and Mann, M., Science, 2005, vol. 308, no.5727, p. 1472.CrossRefGoogle Scholar
  106. 106.
    Blagoev, B., Ong, S.E., Kratchmarova, I., and Mann, M., Nat. Biotechnol., 2004, vol. 22, no.9, p. 1139.CrossRefGoogle Scholar
  107. 107.
    Bose, R., Molina, H., Patterson, A.S., Bitok, J.K., et al., Proc. Natl. Acad. Sci. USA, 2006, vol. 103, no.26, p. 9773.CrossRefGoogle Scholar
  108. 108.
    Goss, V.L., Lee, K.A., Moritz, A., Nardone, J., et al., Blood, 2006, vol. 107, no.12, p. 4888.CrossRefGoogle Scholar
  109. 109.
    Krijgsveld, J., Ketting, R.F., Mahmoudi, T., Johansen, J., et al., Nat. Biotechnol., 2003, vol. 21, no.8, p. 927.CrossRefGoogle Scholar
  110. 110.
    Wu, C.C., MacCoss M.J., Howell K.E., Matthews D.E., Yates J.R. Anal. Chem., 2004, vol. 76, no.17, p. 4951.CrossRefGoogle Scholar
  111. 111.
    Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., et al., Nat. Biotechnol., 1999, vol. 17, no.10, p. 994.CrossRefGoogle Scholar
  112. 112.
    Yi, E.C., Li, X.J., Cooke, K., Lee, H., et al., Proteomics, 2005, vol. 5, no.2, p. 380.CrossRefGoogle Scholar
  113. 113.
    Ong, S.E., Kratchmarova, I., and Mann, M., J. Proteome Res., 2003, vol. 2, no.2, p. 173.CrossRefGoogle Scholar
  114. 114.
    Thelemann, A., Petti, F., Griffin, G., Iwata, K., et al., Mol. Cell Proteomics, 2005, vol. 4, no.4, p. 356.CrossRefGoogle Scholar
  115. 115.
    Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., et al., Mol. Cell Proteomics, 2004, vol. 3, no.12, p. 1154.CrossRefGoogle Scholar
  116. 116.
    Munton, R.P., Tweedie-Cullen, R., Livingstone-Zatchej, M., Weinandy, F., et al., Mol. Cell Proteomics, 2007, vol. 6, no.2, p. 283.Google Scholar
  117. 117.
    Zhang, Y., Wolf-Yadlin, A., Ross, P.L., Pappin, D.J., et al., Mol. Cell Proteomics, 2007, vol. 4, no.9, p. 1240.Google Scholar
  118. 118.
    Schmelzle, K., Kane, S., Gridley, S., Lienhard, G.E., and White, F.M., Diabetes, 2006, vol. 55, no.8, p. 2171.CrossRefGoogle Scholar
  119. 119.
    Wolf-Yadlin, A., Kumar, N., Zhang, Y., Hautaniemi, S., et al., Mol. Syst. Biol, 2006, vol. 2, p. 54.CrossRefGoogle Scholar
  120. 120.
    Goshe, M.B., Conrads, T.P., Panisko, E.A., Angell, N.H., et al., Anal. Chem., 2002, vol. 74, no.3, p. 607.CrossRefGoogle Scholar
  121. 121.
    Qian, W.J., Goshe, M.B., Camp, D.G., Yu, L.R., et al., Anal. Chem., 2003, vol. 75, no.20, p. 5441.CrossRefGoogle Scholar
  122. 122.
    Beausoleil, S.A., Villen, J., Gerber, S.A., Rush, J., and Gygi, S.P., Nat. Biotechnol., 2006, vol. 24, no.10, p. 1285.CrossRefGoogle Scholar
  123. 123.
    Hornbeck, P.V., Chabra, I., Kornhauser, J.M., Skrzypek, E., and Zhang, B., Proteomics, 2004, vol. 4, no.6, p. 1551.CrossRefGoogle Scholar
  124. 124.
    http://www.peptideatlas.org/ (Accessed date 26.02.2009).
  125. 125.
    http://www.humanproteinpedia.org/ (Accessed date 26.02.2009).
  126. 126.
    Pedrioli, P.G.A., et al, Nat. Biotechnol., 2004, vol. 22, p. 1459.CrossRefGoogle Scholar
  127. 127.
    Martens, L., et al., Proteomics, 2005, vol. 5, p. 3501.CrossRefGoogle Scholar
  128. 128.
    http://www.psidev.info/ (Accessed date 26.02.2009).

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • E. D. Kan’shin
    • 1
    • 2
    Email author
  • I. E. Nifant’ev
    • 2
  • A. V. Pshezhetskii
    • 1
    • 3
    • 4
  1. 1.University of Montreal, CHU Sainte-JustineMontrealCanada
  2. 2.Department of ChemistryMoscow State UniversityMoscowRussia
  3. 3.Faculty of Medicine, Department of Pediatrics and BiochemistryUniversity of MontrealMontrealCanada
  4. 4.Faculty of Medicine, Department of Anatomy and Cell BiologyMcGill UniversityQuebecCanada

Personalised recommendations