Journal of Analytical Chemistry

, Volume 65, Issue 6, pp 608–613 | Cite as

Design of a peptide linker group to increase the surface enhanced Raman spectroscopy signal intensity of a rhodamine-nanoparticle system

  • Philip Drake
  • Hsiang-Yuan Huang
  • Yuh-Jiuan Lin


The surface enhanced resonance Raman spectra of three modified carboxy-x-rhodamine dyes were recorded using Au nanoparticles and an excitation laser operating at 670 nm. The dyes were modified with a linker group designed both to increase the surface enhanced Raman spectroscopy signal and to couple the dye to the Au nanoparticles surface. The maximum signal intensity was recorded for a Cys-Gly linker with Cys thiol group acting as the coupling point to the Au surface and Gly-NH2 group used to attach the carboxy-x-rhodamine dye. This gave a signal intensity in the 1503 cm−1 Raman peak that was more than 20 times greater than for the unmodified dye. The Au nanoparticles used had a diameter of 49.8 ± 1.2 nm and were synthesised by the citrate reduction method.


Surface Enhance Raman Spectroscopy Fmoc Linker Group Surface Enhance Raman Spectroscopy AuNP Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fleischmann, M., Hendra, P.J., and McQuillan, A.J., Chem. Phys. Lett., 1974, vol. 26, p. 163.CrossRefGoogle Scholar
  2. 2.
    Albrecht, M.G. and Creighton, J.A., J. Am. Chem. Soc., 1977, vol. 99, p. 5215.CrossRefGoogle Scholar
  3. 3.
    Jeanmaire, D.L. and Van Duyne, R.P., J. Electroanal. Chem., 1977, vol. 84, p. 1.CrossRefGoogle Scholar
  4. 4.
    Campion, A. and Kambhampati, P., Chem. Soc. Rev., 1998, vol. 27, p. 241.CrossRefGoogle Scholar
  5. 5.
    Moskovits, M., Rev. Mod. Phys., 1985, vol. 57, p. 783.CrossRefGoogle Scholar
  6. 6.
    Otto, A., Mrozek, I., Grabhorn, H., and Akemann, W., J. Phys. Condens. Matter., 1992, vol. 4, p. 1143.CrossRefGoogle Scholar
  7. 7.
    Lombardi, J.R., Birke, R.L., Lu, T., and Xu, J., J. Chem. Phys., 1986, vol. 84, p. 4174.CrossRefGoogle Scholar
  8. 8.
    Nakamoto, K., Coord. Chem. Rev., 2002, vol. 226, p. 153.CrossRefGoogle Scholar
  9. 9.
    Zhou, Z., Wang, G., and Xu, Z., Appl. Phys. Lett., 2006, vol. 88, p. 034104.CrossRefGoogle Scholar
  10. 10.
    Nie, S. and Emory, S.R., Science, 1997, vol. 275, no. 21, p. 1102.CrossRefGoogle Scholar
  11. 11.
    Kambhampati, P., Child, C.M., Foster, M.C., and Campion, A., J. Chem. Phys., 1998, vol. 108, p. 5013.CrossRefGoogle Scholar
  12. 12.
    Weaver, M.J., Zou, S., and Chan, H.Y.H., Anal. Chem., 2000, vol. 72, p. 38.CrossRefGoogle Scholar
  13. 13.
    Kerker, M., Wang, D.S., and Chew, H., Appl. Opt., 1980, vol. 19, p. 4159.CrossRefGoogle Scholar
  14. 14.
    Kennedy, B.J., Spaeth, S., Dickey, M., and Carron, K.T., J. Phys. Chem. B, 1999, vol. 103, p. 3640.CrossRefGoogle Scholar
  15. 15.
    Faulds, K., Fruk, L., Robson, D.C., Thompson, D.G., Enright, A., Ewen Smith, W., and Graham, D., Faraday Discuss., 2006, vol. 132, p. 261.CrossRefGoogle Scholar
  16. 16.
    Koo, T.W., Chan, S., Sun, L., Su, X., Zhang, J., and Berlin, A.A., Appl. Spectrosc., 2004, vol. 58, p. 1401.CrossRefGoogle Scholar
  17. 17.
    Carron, K.T. and Kennedy, B.J., Anal. Chem., 1995, vol. 67, p. 3353.CrossRefGoogle Scholar
  18. 18.
    Xu, S., Ji, X., Xu, W., Zhao, B., Dou, X., Bai, Y., and Ozaki, Y., J. Biomed. Opt., 2005, vol. 10, no. 3, p. 1.CrossRefGoogle Scholar
  19. 19.
    Enlow, P.D., Buncick, M., Warmack, R.J., and Vo-Dinh, T., Anal. Chem., 1986, vol. 58, p. 1119.CrossRefGoogle Scholar
  20. 20.
    Driskell, J.D., Kwarta, K.M., Lipert, R.J., and Porter, M.D., Anal. Chem., 2005, vol. 77, no. 19, p. 6147.CrossRefGoogle Scholar
  21. 21.
    Xu, S., Ji, X., Xu, W., Li, X., Wang, L., Bai, Y., Zhao, B., and Ozaki, Y., Analyst, 2004, vol. 129, p. 63.CrossRefGoogle Scholar
  22. 22.
    Grubisha, D.S., Lipert, R.J., Park, H.Y., Driskell, J., and Porter, M.D., Anal. Chem., 2003, vol. 75, p. 5936.CrossRefGoogle Scholar
  23. 23.
    Faulds, K., Stewart, L., Smith, W.E., and Graham, D., Talanta, 2005, vol. 67, p. 667.CrossRefGoogle Scholar
  24. 24.
    Faulds, K., Smith, W.E., and Graham, D., Analyst, 2005, vol. 130, p. 1125.CrossRefGoogle Scholar
  25. 25.
    Lee, P.C. and Meisel, D., J. Phys. Chem., 1982, vol. 86, p. 3391.CrossRefGoogle Scholar
  26. 26.
    Grabar, K.C., Freeman, R.G., Hommer, M.B., and Natan, M.J., Anal. Chem., 1995, vol. 67, p. 735.CrossRefGoogle Scholar
  27. 27.
    Brown, K.R., Walter, D.G., and Natan, M.J., Chem. Mater., 2000, vol. 12, p. 306.CrossRefGoogle Scholar
  28. 28.
    Greene, T.W. and Wuts, P.G.M., Protective Groups in Organic Synthesis, New York: Wiley, 1991.Google Scholar
  29. 29.
    Frerot, E., Coste, J., Pantaloni, A., Durfour, M.N., and Jouin, P., Tetrahedron, 1991, vol. 47, no. 2, p. 259.CrossRefGoogle Scholar
  30. 30.
    Badyal, J.P., Cameron, A.M., Cameron, N.R., Coe, D.M., Cox, R., Davis, B.G., Oates, L.J., Oye, G., and Steel, P.G., Tetrahedron Lett., 2001, vol. 42, p. 8531.CrossRefGoogle Scholar
  31. 31.
    Hayazawa, N., Inouye, Y., Sekkat, Z., and Kawata, S., Chem. Phys. Lett., 2001, vol. 335, p. 369.CrossRefGoogle Scholar
  32. 32.
    Smith, B.C., Infrared Spectral Interpretation: A Systematic Approach, Boca Raton: CRC Press, 1999.Google Scholar
  33. 33.
    Okabayashi, H., Taga, K., Yoshida, T., Ohshima, K., Etori, H., Uehara, T., and Nishio, E., Appl. Spectrosc., 1991, vol. 45, no. 4, p. 626.CrossRefGoogle Scholar
  34. 34.
    McAnally, G., McLaughlin, C., Brown, R., Robson, D.C., Faulds, K., Tackley, D.R., Smith, W.E., and Graham, D., Analyst, 2002, vol. 127, p. 838.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • Philip Drake
    • 1
  • Hsiang-Yuan Huang
    • 1
  • Yuh-Jiuan Lin
    • 1
  1. 1.Medical Electronics and Device Technology CentreIndustrial Technology Research InstituteHsinchuTaiwan

Personalised recommendations