Skip to main content
Log in

Determination of dissociation constants of species oxidizable in aqueous solution by air oxygen on an example of quercetin

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The comparison of literature data on the dissociation constant of one of the most abundant natural flavonoids, e.g., quercetin, demonstrates their irreproducibility. The reason for this likely corresponds to the easiness of its oxidation by air oxygen during the titration process. To eliminate such problems, a modified version of potentiometric titration was proposed with bubbling a weak flow of an inert gas (nitrogen) through the solution to be titrated in the presence of minimal amounts of a nonionic surfactant. By virtue of the technique proposed, the values of pK a for quercetin were measured to be 6.62 ± 0.04 and 9.7 ± 0.3. The first one corresponds to the hydroxyl group in the γ-pyrone fragment of the molecule, while another agrees with the typical values of pK a for phenols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Flavonoids: Chemistry, Biochemistry and Applications, Andersen, O.M. and Markham, K.R., Eds., New York: Taylor & Francis, 2005.

    Google Scholar 

  2. The Science of Flavonoids, Grotewold, E., Ed., New York: Springer, 2006.

    Google Scholar 

  3. Khimicheskaya entsiklopediya (Chemical Encyclopedia), Moscow: Bol’shaya Sovetskaya Encyklopediya, 1998, vol. 5.

  4. Rastitel’nye resursy SSSR, (Plant Resources of the USSR), vols. 1–8, Leningrad: Nauka, 1984–1994.

  5. Simpson, T.N. and Beton, J.L., J. Chem. Soc., 1954, p. 4065.

  6. Tekhnologiya i standartizatsiya lekarstv (Technology and Standardization of Drugs), Georgievskii, V.P. and Konev, F.A., Eds., Kharkov: RIREG, 1996.

    Google Scholar 

  7. Tyukavkina, N.A. and Pogodaeva, N.N., Khim. prirodn. soed., 1971, no. 1, p. 11.

  8. Georgievskii, V.P., Rybachenko, A.I., and Kazakov, A.A., Fiziko-khimicheskie i analiticheskie kharakteristiki flavonoidnykh soedinenii (Physichemical and Analytical Characteristics of Flavonoids), Rostov-na-Donu: Rost. Gos. Univ., 1988.

    Google Scholar 

  9. Sauerwald, N., Schwenk, M., Polster, J., and Bengsch, E., Z. Naturforsch. A, 1998, vol. 53, p. 315.

    CAS  Google Scholar 

  10. Electronic Resource, http://www.boomer.org/pkin/PK01/PK2001237.html

  11. Dubber, M.-J., PhD Thesis, Rhodes Univ., Greece, 2005; cited by http://eprints.ru.ac.za/294/01/MJ-Dubber-PhD.pdf

    Google Scholar 

  12. Herrero-Martinez, J.M., Sanmartin, M., Roses, M., Bosch, E., and Rafols, C., Electrophoresis, 2005, vol. 26, no. 10, p. 1886.

    Article  CAS  Google Scholar 

  13. Woude, H., PhD Thesis, Wageningen Univ., The Netherlands, 2005; cited by http://library.wur.nl/wda/dis-sertations/dis3929.pdf

    Google Scholar 

  14. Herrero-Martinez, J.M., Repolles, C., Bosch, E., Roses, M., and Rafols, C., Talanta, 2008, vol. 74, p. 1008.

    Article  CAS  Google Scholar 

  15. Tungjai, M., Poompimon, W., Loefchutinat, C., Kothan, S., Dechsupa, N., and Naukhetkorn, S., The Open Drug Delivery J., 2008, vol. 2, p. 10.

    Article  CAS  Google Scholar 

  16. Battino, R., Rettich, T.R., and Tominaga, T., J. Phys. Chem. Ref. Data, 1983, vol. 12, no. 2, p. 163.

    Article  CAS  Google Scholar 

  17. Vesilind, P.A. and Morgan, S.M., Introduction to Environmental Engineering, Boston: Brooks/Cole, 2003, 2nd ed.

    Google Scholar 

  18. Abraham, M.H., Whiting, G.S., Carr, P.W., and Onyang, H., J. Chem. Soc. Perkin Trans., 1998, no. 2, p. 1385.

  19. Electronic Resources, http://www.thermidaire.on.ca/do.html and http://cee.citadel.edu

  20. Shchukarev, S.A. and Tolmacheva, T.A., Zhurn. strukt. khim., 1968, vol. 9, no. 1, p. 21.

    CAS  Google Scholar 

  21. Golovanov, I.V. and Zhenodarova, S.M., Zhurn. obshch. khim., 2005, vol. 75, no. 11, p. 1879.

    Google Scholar 

  22. Leo, A., Hansch, C., and Eikins, D., Chem. Rev., 1971, vol. 71, no. 6, p. 525.

    Article  CAS  Google Scholar 

  23. Zenkevich, I.G., Ishchenko, E.V., Makarov, V.G., Makarova, M.N., and Selezneva, A.I., Zh. Obshch. Khim., 2008, vol. 78, no. 9, p. 1449 [Russ. J. Gen. Chem. (Engl. Transl.), vol. 78, no. 9, p. 1682].

    Google Scholar 

  24. Nierenstein, M. and Whedale, M., Ber. Deut. Chem. Ges., 1912, vol. 44, p. 3487.

    CAS  Google Scholar 

  25. Matsuura, T., Matsushima, H., and Sakamoto, H., J. Am. Chem. Soc., 1967, vol. 89, p. 6370.

    Article  CAS  Google Scholar 

  26. Matsuura, T., Matsushima, H., and Nakashima, R., Tetrahedron, 1970, vol. 26, p. 435.

    Article  CAS  Google Scholar 

  27. Brown, S.B., Rajananda, V., Holroyd, J.A., and Evans, E.G.V., Biochem. J., 1982, vol. 205, p. 239.

    CAS  Google Scholar 

  28. Zenkevich, I.G., Eshchenko, A.Yu., Makarova, S.V., and Utsal’, V.A., Rastitel’lnye Resursy, 2007, vol. 43, no. 2, p. 111.

    CAS  Google Scholar 

  29. Zenkevich, I.G., Eshchenko, A.Yu., Makarova, S.V., Vitenberg, A.G., Dobryakov, Yu.G., and Utsal, V.A., Molecules, 2007, vol. 12, no. 3, p. 654.

    Article  CAS  Google Scholar 

  30. Khaled, K.A. and El-Sayed, Y.M., J. Liquid Chromatogr. Rel. Technol, 2000, vol. 23, p. 455.

    Article  CAS  Google Scholar 

  31. Rudakov, O.B., Vostrov, I.A., Fedorov, S.V., Filippov, A.A., Selemenev, V.F., and Pridantsev, A.A., Sputnik khromatografista. Metody zhidkostnoi khromatografii (Methods of Liquid Chromatography: A Handbook), Voronezh: Izd. “Vodolei”, 2004.

    Google Scholar 

  32. Razin, V.V. and Kostikov, R.R., Zadachi i uprazhneniya po organicheskoi khimii (Questions and Exercises on Organic Chemistry), St. Petersburg: St. Petersburg Gos. Univ., 2007.

    Google Scholar 

  33. Zborowski, K., Grybos, R., and Proniewich, L.M., J. Phys. Org. Chem., 2005, vol. 18, p. 250.

    Article  CAS  Google Scholar 

  34. Demidovich, B.P., Lektsii po matematicheskoi teorii ustoichivosti (Lectures on Mathematical Stability Theory), Moscow: Nauka, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.G. Zenkevich, S.V. Guschina, 2010, published in Zhurnal Analiticheskoi Khimii, 2010, Vol. 65, No. 4, pp. 382–387.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zenkevich, I.G., Guschina, S.V. Determination of dissociation constants of species oxidizable in aqueous solution by air oxygen on an example of quercetin. J Anal Chem 65, 371–375 (2010). https://doi.org/10.1134/S1061934810040064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934810040064

Keywords

Navigation