Advertisement

Journal of Analytical Chemistry

, Volume 65, Issue 3, pp 244–248 | Cite as

Spectrophotometric determination of total inorganic arsenic with hexamethylene ammonium-hexamethylenedithiocarbamate in nonionic triton X-100 micellar media

  • Seda Karayünlü
  • Ümit Ay
Articles

Abstract

We have developed a cost-effective and sensitive spectrophotometric method for the determination of arsenic at trace level using a new reagent, hexamethylene ammonium-hexamethylenedithiocarbamate (HMA-HMDTC). Here we show that arsenic reacts with HMA-HMDTC in acidic conditions to yield the As(HMDTC)3 complex. We studied the Beer’s law at 256 nm, which showed linearity over the concentration range 0.2–1.0 µg/mL of arsenic. We have shown that molar absorptivity, Sandell’s sensitivity and the detection limit of the method are 6.06 × 104 L/mol cm, 0.0012 μg/cm2 and 0.060 μg/mL, respectively. We have applied this new method to the determination of arsenic in drinking water.

Keywords

Arsenic Critical Micelle Concentration Flame Atomic Absorption Spec Trometry Atomic Fluo Rescence Spectrometry Micellar Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chakraborti, D., Mandal, B.K., Dhar, R.K., et al., Ind. J. Environ. Prot., 1999, vol. 19, p. 565.Google Scholar
  2. 2.
    Water Quality and Treatment, Washington, DC: American Water Works Association, 1992.Google Scholar
  3. 3.
    Kohlmeyer, U., Jantzen, E., Kuballa, J., et al., Anal. Bional. Chem., 2003, vol. 377, no. 1, p. 6.CrossRefGoogle Scholar
  4. 4.
    Alvarez-Llamas, G., de la Campa, M.R., and Sanz-Medel, A., Anal. Chim. Acta, 2005, vol. 546, no. 2, p. 236.CrossRefGoogle Scholar
  5. 5.
    Sanz, E., Munoz-Olivas, R., Camara, C., et al., J. Environ. Sci. Health, A, 2007, vol. 42, no. 12, p. 1695.CrossRefGoogle Scholar
  6. 6.
    Anezaki, K., Nukatsuka, I., and Ohzeki, K., Anal. Sci., 1999, vol. 15, no. 9, p. 829.CrossRefGoogle Scholar
  7. 7.
    Bundelaska, J.M., Stafilov, T., and Arpadjan, S., Int. J. Environ. Anal. Chem., 2005, vol. 85, no. 3, p. 199.CrossRefGoogle Scholar
  8. 8.
    Gomez, M.M., Kovecs, M., Palacios, M.A., et al., Microchim. Acta, 2005, vol. 150, no. 1, p. 9.CrossRefGoogle Scholar
  9. 9.
    Ferreira, M.A. and Barros, A.A., Anal. Chim. Acta, 2002, vol. 459, no. 1, p. 151.CrossRefGoogle Scholar
  10. 10.
    Kopanica, M. and Norotny, L., Anal. Chim. Acta, 1998, vol. 368, no. 3, p. 211.CrossRefGoogle Scholar
  11. 11.
    Boadu, M., Osae, E.K., Golow, A.A., et al., J. Radioanal. Nucl. Chem., 2001, vol. 249, no. 3, p. 581.CrossRefGoogle Scholar
  12. 12.
    Dasgupta, P.K., Huang, H.L., Zhang, G.F., et al., Talanta, 2002, vol. 58, no. 1, p. 153.CrossRefGoogle Scholar
  13. 13.
    Gupta, V.K. and Agarwal, S., Talanta, 2005, vol. 65, no. 3, p. 730.CrossRefGoogle Scholar
  14. 14.
    Nakai, I., Baba, Y., Tanaka, K., et al., Chem. Lett., 2008, vol. 37, no. 3, p. 304.CrossRefGoogle Scholar
  15. 15.
    Ay, U., Cundeva, K., Akcin, G., et al., Analyt. Lett., 2004, vol. 37, no. 4, p. 695.CrossRefGoogle Scholar
  16. 16.
    Dapaah, A.R.K. and Ayame, A., Anal. Chim. Acta, 1998, vol. 360, nos. 1–3, p. 43.CrossRefGoogle Scholar
  17. 17.
    Gullstrom, D.K. and Mellon, M.G., Anal. Chem., 1953, vol. 25, no. 12, p. 1809.CrossRefGoogle Scholar
  18. 18.
    Gupta, P.K.J., Anal. Abstr., 1987, vol. 49, p. 49.Google Scholar
  19. 19.
    Cherian, L., Raju, J., and Gupta, V.K., J. Ind. Chem. Soc., 1990, vol. 67, no. 6, p. 500.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • Seda Karayünlü
    • 1
  • Ümit Ay
    • 1
  1. 1.Department of ChemistryKocaeli University, Faculty of ScienceUmuttepe-Izmit/KocaeliTurkey

Personalised recommendations