Advertisement

Journal of Analytical Chemistry

, Volume 64, Issue 11, pp 1158–1165 | Cite as

Use of pH electrode for precipitation titration analysis: Theory and practice

  • T. -K. Hong
  • B. -H. Koo
  • S. -Y. Ly
  • M. -H. Kim
  • M. -Z. Czae
Articles

Abstract

A theoretical model for the potentiometric analysis of precipitation titrations using a pH electrode has been developed and tested. The new analytical method is possible by introducing a mediator which must be a weak acid and must be able to form an insoluble salt with a cation (a titrant). Theoretical expressions of pH, as well as the concentrations of all other species, were derived and solved numerically using bisection method. Among the various factors that influence pH during the titration, concentrations of the mediator and initial values of pH were proved to be very critical. The experimental potentiometric titration curves agree well with those predicted from the theoretical model. Crossing point method was adopted to determine an equivalence point from the titration curves. The method is tested using a known system of chloride determination. Among the several mediators tested (bisulfite, chromate, phosphate, cyanide, arsenate and EDTA), phosphate yielded the best results with an error of 0.1%; bisulfite, chromate and arsenate yielded comparably good results with an error of 0.3∼0.5%, but cyanide and EDTA yielded unsatisfactory results. The optimum mediator concentration found to be in a range of 1–2 mM.

Keywords

AgCl Titration Curve Equivalence Point Potentiometric Titration Curve Silver Chromate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Czae, M.-Z., J. Korean Chem. Soc., 1970, vol. 14, p. 137.Google Scholar
  2. 2.
    Hota, N., Bunseki Kagaku, 1970, vol. 19, p. 780.Google Scholar
  3. 3.
    Hota, N., Bunseki Kagaku, 1971, vol. 20, p. 1522.Google Scholar
  4. 4.
    Hota, N., Bunseki Kagaku, 1972, vol. 21, p. 1463.Google Scholar
  5. 5.
    Goertzen, J.O. and Oster, J.D., Soil Sci. Soc., Proc., 1972, vol. 36, p. 691.CrossRefGoogle Scholar
  6. 6.
    Voncina, D.B., Dobcnik, D., and Gomiscek, S., Anal. Chim. Acta, 1992, vol. 263, p. 147.CrossRefGoogle Scholar
  7. 7.
    Dobcnik, D., Frezenius’ Z. Anal. Chem., 1982, vol. 313, p. 411.CrossRefGoogle Scholar
  8. 8.
    Dobcnik, D. and Gibicar, J., Vestn. Slov. Kem. Drus., 1987, vol. 34, p. 305.Google Scholar
  9. 9.
    Voncina, D.B., Dobcnik, D., and Gomiscek, S., Anal. Chim. Acta, 1992, vol. 263, p. 147.CrossRefGoogle Scholar
  10. 10.
    Pungor, E. and Schulek, E., in Indicators, Bishop, E., Ed., Oxford: Pergamon, 1972, ch. 7.Google Scholar
  11. 11.
    Legradi, L., Magyar Kemiai Folyoirat, 1970, vol. 76, p. 37.Google Scholar
  12. 12.
    Coetzee, J.F., in Treatise on Analytical Chemistry, Kolthoff, I.M. and Elving, P.J., Eds., New York: Wiley, 1983, 2nd ed., vol. 3, ch. 7.Google Scholar
  13. 13.
    Hunt, H.R., Block, T.F., and McKelvy, G.M., Laboratory Experiment for General Chemistry, New York: Brooks&Cole, 2002, 4th ed.Google Scholar
  14. 14.
    Butler, J.N., Ionic Equilibrium: A Mathematical Approach, Reading, MA: Addison-Wesley, 1964.Google Scholar
  15. 15.
    Freiser, H. and Fernando, Q., Ionic Equilibria in Analytical Chemistry, New York: Wiley, 1963, ch. 6 and Appendix.Google Scholar
  16. 16.
    Gordus, A.A., Analytical Chemistry, New York: McGraw-Hill, 1985, chs. 6 and 7.Google Scholar
  17. 17.
    Freiser, H., J. Chem. Educ., 1970, vol. 47, p. 809.Google Scholar
  18. 18.
    Gordus, A.A., J. Chem. Educ., 1991, vol. 68, p. 215.CrossRefGoogle Scholar
  19. 19.
    Czae, M.-Z., Ly, S.-Y., Hong, T.-K., and Kim, M.-H., J. Korean Chem. Soc., 1992, vol. 36, p. 780.Google Scholar
  20. 20.
    Cheny, W. and Kincaid, D., Numerical Mathematics and Computing, Monterey, CA: Brooks&Cole, 1985, 2nd ed.Google Scholar
  21. 21.
    Press, W.P., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Recipes: The Art of Scientific Computing, Cambridge: Cambridge Univ. Press, 1986, ch. 9.Google Scholar
  22. 22.
    Skoog, D.A. and West, D.M., Fundamentals of Analytical Chemistry, Philadelphia: Saunders College, 1976, 3rd ed.Google Scholar
  23. 23.
    Harris, D.C., Quantitative Chemical Analysis, New York: W.H. Freeman and Co., 1982.Google Scholar
  24. 24.
    Martin, D.F., Marine Chemistry, New York: Marcel Dekker, 1968, vol. 1.Google Scholar
  25. 25.
    Cox, R.A., in Chemical Oceanography, Riley, J.P. and Skirrow, G., Eds., New York: Academic, 1965, ch. 3.Google Scholar
  26. 26.
    Riley, J.P., in Chemical Oceanography, Riley, J.P. and Skirrow, G., Eds., New York: Academic, 1965, ch. 21.Google Scholar
  27. 27.
    CRC Handbook of Chemistry and Physics, Weast, R.C., Ed., Boca Raton: CRC, 1984, 65th ed., D-167 and B-222.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • T. -K. Hong
    • 1
  • B. -H. Koo
    • 2
  • S. -Y. Ly
    • 3
  • M. -H. Kim
    • 4
  • M. -Z. Czae
    • 2
  1. 1.Department of ChemistryHanseo UniversitySeosan, ChoongnamKorea
  2. 2.Department of ChemistryHanyang UniversitySeoulKorea
  3. 3.Department of Fine ChemistrySeoul National University of TechnologySeoulKorea
  4. 4.Department of ScienceGeorgia Perimeter CollegeDunwoodyUSA

Personalised recommendations