Advertisement

Electrodes in stripping voltammetry: from a macro- to a micro- and nano-structured surface

  • N. Yu. Stozhko
  • N. A. Malakhova
  • I. V. Byzov
  • Kh. Z. Brainina
Articles

Abstract

A correlation between the morphology of the solid surface and electrochemical response was found in microscopic and electrochemical investigations. A shift of the oxidation potentials of metals to more negative values was observed on electrodes with microstructured surface with respect to similar processes on macrostructured electrodes. The formation of passivating films, causing reverse current and deteriorating the analytical signal, was not observed, and the performance characteristics of voltammetric procedures were improved. The experimental data indicated the increased electrochemical activity of modifying metal particles with a decrease in the particle size. As a result of the deliberate change of the surface composition and the formation of a micro- and nano-structured surface, a new generation of electrodes was developed with excellent electroanalytical characteristics.

Keywords

Mercury Bismuth Electrode Surface Silver Nanoparticles Cementit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brainina, Kh.Z., Anal. Chim. Acta, 1995, vol. 305, p. 146.CrossRefGoogle Scholar
  2. 2.
    Tarasevich, M.R., Bogdanovskaya, V.A., Gegeshidze, L.V., et al., Zhurn. anal. khim., 1999, vol. 54, no. 9, p. 966 [J. Anal. Chem. (Engl. Transl.), vol. 54, no. 9, p. 858].Google Scholar
  3. 3.
    Budnikov, G.K., Maistrenko, V.N., and Murinov, Yu.I., Vol’tamperometriya s modifitsirovannymi i ul’tramikroelektrodami (Voltammetry with Modified and Ultramicroelectrodes), Moscow: Nauka, 1994.Google Scholar
  4. 4.
    Bakker, E., Anal. Chem., 2004, vol. 76, p. 3285.CrossRefGoogle Scholar
  5. 5.
    Bakker, E. and Telting-Diaz, M., Anal. Chem., 2002, vol. 74, p. 2781.CrossRefGoogle Scholar
  6. 6.
    Dong, S. and Wang, Y., Electroanalysis, 1989, vol. 1, p. 99.CrossRefGoogle Scholar
  7. 7.
    Wang, J., Electroanalysis, 1991, vol. 3, p. 255.CrossRefGoogle Scholar
  8. 8.
    Downard, A.J., Electroanalysis, 2000, vol. 12, no. 14, p. 1085.CrossRefGoogle Scholar
  9. 9.
    Walcarius, A., Electroanalysis, 2001, vol. 13, nos. 8–9, p. 701.CrossRefGoogle Scholar
  10. 10.
    Navratilova, Z. and Kula, P., Electroanalysis, 2003, vol. 15, no. 10, p. 837.CrossRefGoogle Scholar
  11. 11.
    Zen, J.-M., Kumar, A.S., and Tsai, D.-M., Electroanalysis, 2003, vol. 15, no. 3, p. 1073.CrossRefGoogle Scholar
  12. 12.
    Brainina, Kh.Z., Malakhova, N.A., and Stojko, N.Yu., Fresenius J. Anal. Chem., 2000, vol. 368, p. 307.CrossRefGoogle Scholar
  13. 13.
    Brainina, Kh.Z., Stozhko, N.Yu., Malakhova, N.A., and Ivanova, A.V., Mikrosistemnaya tekhnika, 2002, no. 2, p. 10.Google Scholar
  14. 14.
    Stozhko, N.Yu., Malakhova, N.A., Fyodorov, M.V., and Brainina, Kh.Z., J. Solid State Electrochem., 2008, vol. 12, p. 1185.CrossRefGoogle Scholar
  15. 15.
    Stozhko, N.Yu., Malakhova, N.A., Fyodorov, M.V., and Brainina, Kh.Z., J. Solid State Electrochem., 2008, vol. 12, p. 1219.CrossRefGoogle Scholar
  16. 16.
    McCreery R.L., Electrochemical Properties of Carbon Surfaces. Interfacial Electrochemistry: Theory, Experiment and Applications, Wieckowski, A., Ed., New York: Marcel Dekker, 1999.Google Scholar
  17. 17.
    Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbon Materials), Moscow: Nauka, 1984.Google Scholar
  18. 18.
    Wantz, F., Banks, C.E., and Compton, R.G., Electroanalysis, 2005, vol. 17, no. 8, p. 655.CrossRefGoogle Scholar
  19. 19.
    Banks, C.E. and Compton, R.G., Anal. Sci., 2005, vol. 21, p. 1263.CrossRefGoogle Scholar
  20. 20.
    Brainina, Kh.Z., Neiman, E.Ya., and Slepushkin, V.V., Inversionnye vol’tamperometricheskie metody (Stripping Voltammetric Methods), Moscow: Khimiya, 1988.Google Scholar
  21. 21.
    Brainina, Kh.Z., Ivanova, A.V., and Malakhova, N.A., Anal. Chim. Acta, 1997, vol. 349, p. 85.CrossRefGoogle Scholar
  22. 22.
    Zakharchuk, N.F. and Brainina, Kh.Z., Electroanalysis, 1998, vol. 10, no. 6, p. 379.CrossRefGoogle Scholar
  23. 23.
    Zakharchuk, N.F., Saraeva, S.Yu., Borisova, N.S., and Brainina, Kh.Z., Electroanalysis, 1999, vol. 11, no. 9, p. 614.CrossRefGoogle Scholar
  24. 24.
    Faller, C., Henze G., Stojko N., Saraeva S., and Brainina, Kh., Fresenius J. Anal. Chem., 1997, vol. 358, p. 670.CrossRefGoogle Scholar
  25. 25.
    Brainina, Kh.Z., Stozhko, N.Yu., and Shalygina, Zh.V., Zhurn. anal. khim., 2002, vol. 57, no. 10, p. 1116 [J. Anal. Chem. (Engl. Transl.), vol. 57, no. 10, p. 945].Google Scholar
  26. 26.
    Brainina, Kh.Z., Stozhko, N.Yu., and Shalygina, Zh.V., Zhurn. anal. khim., 2004, vol. 59, no. 8, p. 843 [J. Anal. Chem. (Engl. Transl.), vol. 59, no. 8, p. 753].Google Scholar
  27. 27.
    Malakhova, N.A., Stozhko, N.Yu., and Brainina, Kh.Z., Electrochem. commun., 2007, vol. 9, p. 221.CrossRefGoogle Scholar
  28. 28.
    Zakharchuk, N.F., Illarionova, I.S., and Yudelevich, I.G., Elektrokhimiya, 1982, vol. 18, no. 3, p. 331.Google Scholar
  29. 29.
    Zakharchuk, N.F., Valisheva, N.A., Yudelevich, I.G., and Zebreva, A.I., Zhurn. anal. khim., 1981, vol. 36, no. 4, p. 650.Google Scholar
  30. 30.
    Brainina, Kh.Z., Elektrokhimiya, 1980, vol. 16, p. 678.Google Scholar
  31. 31.
    Brainina, Kh.Z., Chernysheva, A.V., and Stozhko, N.Yu., Elektrokhimiya, 1980, vol. 16, no. 12, p. 1874.Google Scholar
  32. 32.
    Brainina, Kh.Z., Stozhko, N.Yu., Kamyshov, V.M., Chernysheva, A.V., and Nechaev, Yu.A., Elektrokhimiya, 1989, vol. 25, no. 8, p. 1100.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • N. Yu. Stozhko
    • 1
  • N. A. Malakhova
    • 1
  • I. V. Byzov
    • 1
  • Kh. Z. Brainina
    • 1
  1. 1.Ural State Economic UniversityYekaterinburgRussia

Personalised recommendations