Journal of Analytical Chemistry

, Volume 63, Issue 1, pp 69–74 | Cite as

Quantitative chemical analysis of electrolytes in aqueous solutions exploiting the Donnan dialysis process

  • A. D. DakashevEmail author
  • K. A. Stancheva


Chemical analysis of electrolytes in aqueous solutions is performed with a dialyzer consisting of two selective membranes: a cation and an anion-exchange membrane. The dialyzer actually functions like a galvanic cell when dialysis is carried out. The current that appears in the cell is measured. Since the dialysis process is caused by the concentration gradient, the current measured also depends on the concentration gradient. For proper conditions, it becomes possible to determine the concentration. The method may compete in some aspects with ion-selective potentiometry.


Glass Vessel Dialysis Cell Calibration Curve Method Dialysis Process Amperometric Titration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akretche, D.-E. and Kerdjoudj, H., Talanta, 2000, vol. 51, no. 2, p. 281.CrossRefGoogle Scholar
  2. 2.
    Garmes, H., Persin, F., Sandeaux, J., Pourcelly, G., and Mountadar, M., Desalination, 2002, vol. 147, nos. 1–3, p. 287.CrossRefGoogle Scholar
  3. 3.
    Matos, C.T., Velizarov, S., Crespo, J.G., and Reis, M.A.M., Water Res., 2006, vol. 40, no. 2, p. 231.CrossRefGoogle Scholar
  4. 4.
    Wisniewski, J., Rozanska, A., and Winnicki, T., Desalination, 2005, vol. 182, nos. 1–3, p. 339.CrossRefGoogle Scholar
  5. 5.
    Pyrzynska, K., Microchim. Acta, 2006, vol. 153, no. 2, p. 117.CrossRefGoogle Scholar
  6. 6.
    Jeong, J., Kim, M.-S., Kim, B.-S., Kim, S.-K., Kim, W.-B., and Lee, J.-C., J. Hazard. Mater. B, 2005, vol. 124, nos. 1–3, p. 230.CrossRefGoogle Scholar
  7. 7.
    Kir, E., Cengeloglu, Y., and Ersoz, M., J. Colloid. Interface Sci., 2005, vol. 292, no. 2, p. 498.CrossRefGoogle Scholar
  8. 8.
    Berdous, D. and Akretche, D.-E., Desalination, 2002, vol. 144, nos. 1–3, p. 213.CrossRefGoogle Scholar
  9. 9.
    Ruzichka, J. and Hansen, E.H., Flow Injection Analysis, New York: Wiley, 1988, 2nd ed.Google Scholar
  10. 10.
    Kasthurikrishnan, N. and Koropchak, J.A., Anal. Chem., 1993, vol. 65, no. 7, p. 857.CrossRefGoogle Scholar
  11. 11.
    van Staden, J.F., Fresenius. J. Anal. Chem., 1995, vol. 352, nos. 3–4, p. 271.CrossRefGoogle Scholar
  12. 12.
    Antonia, A. and Allen, L.B., J. Agric. Food Chem., 2001, vol. 49, no. 10, p. 4615.CrossRefGoogle Scholar
  13. 13.
    Miro, M. and Frenzel, W., Analyst, 2003, vol. 128, no. 10, p. 1291.CrossRefGoogle Scholar
  14. 14.
    Miro, M. and Frenzel, W., TrAC Trends Anal. Chem., 2004, vol. 23, no. 9, p. 624.CrossRefGoogle Scholar
  15. 15.
    Sulyok, M., Miro, M., Stingeder, G., and Koellensperger, G., Anal. Chim. Acta, 2005, vol. 546, no. 1, p. 1.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Department of Analytical ChemistryAssen Zlatarov UniversityBiurgasBulgaria

Personalised recommendations