Advertisement

Journal of Analytical Chemistry

, Volume 63, Issue 1, pp 2–12 | Cite as

Chemically modified electrodes with amperometric response in enantioselective analysis

  • G. K. Budnikov
  • G. A. Evtyugin
  • Yu. G. Budnikova
  • V. A. Al’fonsov
Reviews

Abstract

Estimation of the enantiomeric purity of chiral biologically active compounds, as well as the determination of particular optical isomers, is very important for the control of medicines, food, and biological fluids. The main approaches to the development of electrochemical enantioselective sensors with the amperometric detection of the signal are considered in this review. Examples of the use of biochemical and supramolecular receptors providing enantiomer recognition and techniques of their inclusion into the corresponding sensors are given. The main characteristics of enantioselective sensors for the determination of optically active medicines, organic acids, aminoacids, carbohydrates, alcohols, and other biologically important compounds are considered.

Keywords

Polyaniline Amperometric Response Nitroxyl Radical Optical Isomer Pipecolic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Drug Stereochemistry: Analytical Methods and Pharmacology, Wainer, E.I.W., Ed., New York: Marcel Dekker, 1993.Google Scholar
  2. 2.
    Stinson, S.C., Chem. Eng. News, 2000, vol. 78, no. 43, p. 55.CrossRefGoogle Scholar
  3. 3.
    Hart, J.P. and Wring, S.A., TrAC Trends Anal. Chem., 1997, vol. 16, no. 2, p. 89.CrossRefGoogle Scholar
  4. 4.
    Chiral Separations by Liquid Chromatography, Ahuja, S., Ed., ACS Symp. Ser., Wachington DC: Am. Chem. Soc., 1991, vol. 471.Google Scholar
  5. 5.
    Wang, Z.H., Luo, G.A., Chen, J.F., Xiao, S.F., and Wang, Y.M., Electrophoresis, 2003, vol. 24, no. 24, p. 4181.CrossRefGoogle Scholar
  6. 6.
    Shpigun, O.A., Anan’eva, I.A., Budanova, N.Yu., and Shapovalova, E.N, Usp. Khim., 2003, vol. 72, no. 12, p. 1167.Google Scholar
  7. 7.
    Stefan, R.-I., van Staden J.F., and Aboul-Enein, H.Y., Cryst. Eng., 2001, vol. 4, nos. 2–3, p. 113.CrossRefGoogle Scholar
  8. 8.
    Lee, J.-Y. and Park, S.-M., J. Phys. Chem. B, 1998, vol. 102, no. 49, p. 9940.CrossRefGoogle Scholar
  9. 9.
    Ye, L. and Haupt, K., Anal. Bioanal. Chem., 2004, vol. 378, no. 8, p. 1887.CrossRefGoogle Scholar
  10. 10.
    Wessa, T. and Göpel, W., Fresenius J. Anal. Chem., 1998, vol. 361, no. 3, p. 239.CrossRefGoogle Scholar
  11. 11.
    Dodziuk, H., Introduction to Supramolecular Chemistry, Dordrecht: Kluwer, 2002.Google Scholar
  12. 12.
    Han, M.S., Biomed. Chromatogr., 1997, vol. 11, no. 5, p. 259.CrossRefGoogle Scholar
  13. 13.
    Furuta, R. and Nakazawa, H., J. Chromatogr., 1992, vol. 625, no. 2, p. 231.CrossRefGoogle Scholar
  14. 14.
    Davankov, V.A., J. Chromatogr. A, 2003, vol. 1000, nos. 1–2, p. 891.CrossRefGoogle Scholar
  15. 15.
    Blanco-López, M.C., Lobo-Castanon, M.J., Miranda-Ordieres, A.J., and Tunon-Blanco, P., TrAC Trends Anal. Chem., 2004, vol. 23, no. 1, p. 36.CrossRefGoogle Scholar
  16. 16.
    Malitesta, C., Losito, I., and Zambonin, P.G., Anal. Chem., 1999, vol. 71, no. 7, p. 1366.CrossRefGoogle Scholar
  17. 17.
    Sheridan, E.M. and Breslin, C.B., Electroanalysis, 2005, vol. 17, nos. 5–6, p. 532.CrossRefGoogle Scholar
  18. 18.
    Kashiwagi, Y., Chiba, S., and Anzai, J., J. Electroanal. Chem., 2004, vol. 566, no. 2, p. 257.CrossRefGoogle Scholar
  19. 19.
    Lawrence, M.S., Pagels, M., Meredith, A., Jones, T.G.J., Hall, C.E., Pickes, C.S.J., Godfried, H.P., Banks, C.E., Compton, R.G., and Jiang, L., Talanta, 2006, vol. 69, no. 4, p. 829.CrossRefGoogle Scholar
  20. 20.
    Stefan, R.I. and Nejem, R.M., Anal. Lett., 2003, vol. 36, no. 12, p. 2639.CrossRefGoogle Scholar
  21. 21.
    Stefan, R.-I. and Neijem, R.M., Instrument. Sci. Technol., 2004, vol. 32, no. 3, p. 311.CrossRefGoogle Scholar
  22. 22.
    Downs, R.T. and Hazen, R.M., J. Mol. Catal. A, 2004, vol. 216, no. 2, p. 273.CrossRefGoogle Scholar
  23. 23.
    Ward, T.J., Anal. Chem., 2000, vol. 72, no. 18, p. 4521.CrossRefGoogle Scholar
  24. 24.
    Francotte, E.R., Chimia, 1997, vol. 51, p. 717.Google Scholar
  25. 25.
    Sun, Q. and Olesik, S.V., J. Chromatogr. B, 2000, vol. 745, no. 1, p. 159.CrossRefGoogle Scholar
  26. 26.
    Zaugg, S. and Thormann, W., J. Chromatogr. A, 2000, vol. 875, nos. 1–2, p. 27.CrossRefGoogle Scholar
  27. 27.
    Na, N., Hu, Y., Ouyang, J., Baeyens, W.R., Delanghe, J.R., Taes, Y.E.C., Xie, M., Chen, H., and Yang, Y., Talanta, 2006, vol. 69, no. 4, p. 866.CrossRefGoogle Scholar
  28. 28.
    Rat’ko, A.A., Stefan, R.-I., Staden, J.K., and Aboul-Enein, H.Y., Sens. Actuat. B, vol. 99, nos. 2–3, p. 539.Google Scholar
  29. 29.
    Yin, X., Ding, J., Zhang, S., and Kong, J., Biosens. Bioelectron., 2006, vol. 21, no. 11, p. 2184.Google Scholar
  30. 30.
    Van Staden R.I.S. and Rat’ko, A.A., Talanta, 2006, vol. 69, no. 5, p. 1049.CrossRefGoogle Scholar
  31. 31.
    Motonaka, J., Katumoto, Y., and Ikeda, S., Anal. Chim. Acta, 1998, vol. 368, nos. 1–2, p. 91.CrossRefGoogle Scholar
  32. 32.
    Avramescu, A., Noguer, T., Magearu, V., and Marty, J.-L., Anal. Chim. Acta, 2001, vol. 433, no. 1, p. 81.CrossRefGoogle Scholar
  33. 33.
    Tap, H., Gros, P., and Gue, A.M., Sens. Actuat. B, vol. 68, nos. 1–3, p. 123.Google Scholar
  34. 34.
    Halliwell, C.M., Simon, E., Toh, C.-S., Bartlett, P.N., and Cass, A.E.G., Anal. Chim. Acta, 2002, vol. 453, no. 2, p. 191.CrossRefGoogle Scholar
  35. 35.
    Narasaiah, D., Spohn, U., and Gorton, L., Anal. Lett., 1996, vol. 29, no. 2, p. 181.Google Scholar
  36. 36.
    Tap, H., Gros, P., and Gue, A.M., Sens. Actuat. B, 2000, vol. 68, nos. 1–3, p. 123.CrossRefGoogle Scholar
  37. 37.
    Varadi, M., Adanyi, N., Szabo, E.E., and Trummer, N., Biosens. Bioelectron., 1999, vol. 14, no. 3, p. 335.CrossRefGoogle Scholar
  38. 38.
    Sarkar, P., Tothill, I.E., Setford, S.J., and Turner, A.P.F., Analyst, 1999, vol. 124, no. 6, p. 865.CrossRefGoogle Scholar
  39. 39.
    Arai, G., Noma, T., Hayashi, M., and Yasumori, I., J. Electroanal. Chem., 1998, vol. 452, no. 1, p. 43.CrossRefGoogle Scholar
  40. 40.
    Stefan, R.-I., Bala, C., and Aboul-Enein, H.Y., Sens. Actuat. B, 2003, vol. 92, nos. 1–2, p. 228.CrossRefGoogle Scholar
  41. 41.
    Stefan, R.-I., van Staden, J.F., and Aboul-Enein, H.Y., Biosens. Bioelectron., 2000, vol. 15, nos. 1–2, p. 1.CrossRefGoogle Scholar
  42. 42.
    Stefan, R.-I., van Staden, J.F., Bala, C., and Aboul-Enein, H.Y., J. Pharm. Biomed. Anal., 2004, vol. 36, p. 889.CrossRefGoogle Scholar
  43. 43.
    Stefan, R.-I., van Staden, J.F., Mulaudzi, L.V., and Aboul-Enein, H.Y., Anal. Chim. Acta, 2002, vol. 467, nos. 1–2, p. 189.CrossRefGoogle Scholar
  44. 44.
    Stefan, R.-I., Bokretsion, R.G., van Staden, J.F., and Aboul-Enein, H.Y., Biosens. Bioelectron., 2003, vol. 19, no. 3, p. 261.CrossRefGoogle Scholar
  45. 45.
    Stefan, R.-I., Nejem, R.M., van Staden, J.F., and Aboul-Enein, H.Y., Sens. Actuat. B, 2003, vol. 94, no. 3, p. 271.CrossRefGoogle Scholar
  46. 46.
    Zheng, H., Hirose, Y., Kimura, T., Suye, S., Hori, T., Katayama, H., Arai, J., Kawakami, R., and Ohshima, T., Sci. Technol. Adv. Mater., 2006, vol. 7, no. 3, p. 243.CrossRefGoogle Scholar
  47. 47.
    Kwan, R.C.H., Hon, P.Y.T., and Renneberg, R., Anal. Chim. Acta, 2004, vol. 523, no. 1, p. 81.CrossRefGoogle Scholar
  48. 48.
    Inaba, Y., Mizukami, K., Hamada-Sato, N., Kobayashi, T., Imada, C., and Watanabe, E., Biosens. Bioelectron., 2003, vol. 19, no. 5, p. 423.CrossRefGoogle Scholar
  49. 49.
    Tao, G., Katz, E., and Willner, I., Chem. Commun., 1997, no. 3, p. 2073.Google Scholar
  50. 50.
    Stefan, R.-I., van, Staden, J.F. and Aboul-Enein, H.Y., Talanta, 2004, vol. 64, no. 1, p. 151.CrossRefGoogle Scholar
  51. 51.
    Taylor, P., Wong, L., Radić, Z., Tsigelny, I., Brüggemann, R., Hosea, N.A., and Berman, H.A., Chem.-Biol. Interact., 1999, vols. 119–120, p. 3.CrossRefGoogle Scholar
  52. 52.
    Yen, J.-H., Tsai, C.C., and Wang, Y.-S., Ecotoxicol. Environ. Saf., 2003, vol. 55, p. 236.CrossRefGoogle Scholar
  53. 53.
    Wang, Y.-S., Tai, K.-T., and Yen, J.-H., Ecotoxicol. Environ. Saf., 2004, vol. 57, p. 346.CrossRefGoogle Scholar
  54. 54.
    Ahmed, S., Imai, T., Yoshigae, Y., and Otagiri, M., Life Sci., 1997, vol. 61, no. 19, p. 1879.CrossRefGoogle Scholar
  55. 55.
    Moros-Varas, F., Shah, A., Aikens, J., Nadkarni, N.P., Rozzell, J.D., and Demirjian, D.C., Bioorg. Med. Chem., 1999, vol. 7, no. 10, p. 2183.CrossRefGoogle Scholar
  56. 56.
    Aydin, G., Celebi, S.S., Özyörük, H., and Yildiz, A., Sens. Acutuat. B, vol. 87, no. 1, p. 8.Google Scholar
  57. 57.
    Serra, D., Reviejo, A.J., Parrado, C., and Pingarron, J.M., Biosens. Bioelectron., 1999, vol. 14, no. 5, p. 505.CrossRefGoogle Scholar
  58. 58.
    Garjonyte, R., Yigzaw, Y., Meskus, R., Malinauskas, A., and Gorton, L., Sens. Actuat. B, vol. 79, no. 1, p. 33.Google Scholar
  59. 59.
    Haccoun, J., Piro, D., Noel, V., and Pham, M.C., Bioelectrochem., 2006, vol. 68, no. 2, p. 218.CrossRefGoogle Scholar
  60. 60.
    Ivanova, E.V. and Ryabov, A.D., Vestn. Mosk. Un-Ta, Ser. 2: Khim., 2002, vol. 43, no. 6, p. 424.Google Scholar
  61. 61.
    Hofstetter, H. and Hofstetter, O., TrAC Trends Anal. Chem., 2005, vol. 24, no. 10, p. 869.CrossRefGoogle Scholar
  62. 62.
    Berthelot, J., Jubault, M., and Simonet, J., Electrochim. Acta, 1983, vol. 28, no. 12, p. 1719.CrossRefGoogle Scholar
  63. 63.
    Salmón, M., Saloma, M., Bidan, G., and Genies, E.M., Electrochim. Acta, 1989, vol. 34, no. 2, p. 117.CrossRefGoogle Scholar
  64. 64.
    Attard, G.A., Gillies, J.E., Harris, C.A., Jenkins, D.J., Johnston, P., Trice, M.A., Watson, D.J., and Wells, P.B., Appl. Catal. A, 2001, vol. 222, nos. 1–2, p. 393.Google Scholar
  65. 65.
    Kashiwagi, Y., Chiba, S., and Anzai, J., J. Electroanal. Chem., 2004, vol. 566, no. 2, p. 257.CrossRefGoogle Scholar
  66. 66.
    He, J., Sato, H., Yang, P., and Yamagishi, A., Electrochem. Commun., 2003, vol. 5, no. 5, p. 388.CrossRefGoogle Scholar
  67. 67.
    He, J., Sato, H., Yang, P., and Yamagishi, A., J. Electroanal. Chem., 2003, vol. 560, no. 2, p. 169.CrossRefGoogle Scholar
  68. 68.
    Ashraf, S.A., Kane-Maguire, L.A.P., Majidi, M.R., Pyne, S.G., and Wallace, G.G., Polymer, 1997, vol. 38, no. 11, p. 2627.CrossRefGoogle Scholar
  69. 69.
    Guo, H., Knobler, C.M., and Kner, R.B., Synth. Met., 1999, vol. 101, nos. 1–3, p. 44.CrossRefGoogle Scholar
  70. 70.
    Egan, V., Bernstein, R., Hohmann, L., Tran, T., and Kaner, R.B., Chem. Commun., 2001, no. 9, p. 801.Google Scholar
  71. 71.
    Sheridan, E.M. and Breslin, C.B., Electroanalysis, 2005, vol. 17, nos. 5–6, p. 532.CrossRefGoogle Scholar
  72. 72.
    Yin, X., Ding, J., Zhang, S., and Kong, J., Biosens. Bioelectron., 2006, vol. 21, no. 11, p. 2184.Google Scholar
  73. 73.
    Yang, L., Yang, Z., and Cao, W., J. Colloid Interface Sci., 2005, vol. 292, no. 2, p. 503.CrossRefGoogle Scholar
  74. 74.
    Pellon, P., Deltel, E., and Pilard, J.-F., Tetrahedron Lett., 2001, vol. 42, no. 5, p. 867.CrossRefGoogle Scholar
  75. 75.
    Wang, Y., Yin, X., Shi, M., Li, W., Zhang, L., and Kong, J., Talanta, 2006, vol. 69, no. 5, p. 1240.CrossRefGoogle Scholar
  76. 76.
    Nejem, R.M., PhD (Chem.) Thesis, Pretoria: Univ. of Pretoria, 2005.Google Scholar
  77. 77.
    Einaga, Y., Sato, R., Olivia, H., Shin, D., Ivandini, T.A., and Fujishima, A., Electrochim. Acta, 2004, vol. 49, nos. 22–23, p. 3989.CrossRefGoogle Scholar
  78. 78.
    Park, S., Boo, H., and Chung, T.D., Anal. Chim. Acta, 2006, vol. 556, no. 1, p. 46.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • G. K. Budnikov
    • 1
  • G. A. Evtyugin
    • 1
  • Yu. G. Budnikova
    • 2
  • V. A. Al’fonsov
    • 2
  1. 1.Kazan State UniversityKazanRussia
  2. 2.Arbuzov Institute of Organic and Physical Chemistry, Kazan Research CenterRussian Academy of SciencesKazanRussia

Personalised recommendations