Skip to main content
Log in

Voltammetric behavior of some fluorinated quinolone antibacterial agents and their differential pulse voltammetric determination in drug formulations and urine samples using a β-cyclodextrin-modified carbon-paste electrode

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A voltammetric determination of ofloxacin (OF), norfloxacin (NF), gatifloxacin (GF), and lomefloxacin (LF) at a β-cyclodextrin-modified carbon-paste electrode (CDMCPE) is described. A large increase in the peak currents was observed in cyclic voltammetry (CV) and differential pulse voltammetry (DPV) of OF, NF, GF, and LF at CDMCPE compared with a bare carbon-paste electrode (CPE). These increases in the peak currents were attributed to the complex formation of the quinone group of the drugs with β-cyclodextrin. CV studies indicate that the process is irreversible and adsorption-controlled. The experimental parameters which influence the peak current responses of OF, NF, GF, and LF were studied. The reduction peak currents of OF, NF, GF, and LF change linearly over the common concentration range from 3.2 × 10−8 to 2 × 10−5 M, with a common correlation coefficient and limit of detection of 0.9995 and 2.4 × 10−8 M, respectively, in pH 4.0 Britton-Robinson (BR) buffer at an accumulation time of 160 s. The interference of metal ions in the peak current response was also studied. The modified electrode exhibited good sensitivity and stability. The proposed method was applied to the determination of OF, NF, GF, and LF in both commercially available drugs and spiked human urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Matindale, London: Royal Pharmaceutical Society, 31st ed., 1996.

  2. Mizuno, A., Uematsu, T., and Nakashima. M., J. Chromatogr., 1994, vol. 653, p. 187.

    CAS  Google Scholar 

  3. Borner, K., Hartwig, H., and Lode, H., Chromatografia, 2000, vol. 52, p. 105.

    Article  Google Scholar 

  4. Lian, J., Li, X. J., Zhang, Y., and Pan, J.H., Fenxi Huaxue, 1999, vol. 27, p. 1117.

    CAS  Google Scholar 

  5. Elyazbi, F.A., Spectrosc. Lett., 1992, vol. 25, p. 279.

    CAS  Google Scholar 

  6. Fent, L., Chu, Q.P., and Shao, Z.G., Zhongguao Kangjunsu Zazhi., 1996, vol. 21, p. 17.

    Google Scholar 

  7. Mathur, S.C., Kumar, Y., Murugesau, N., Rathore, Y.K.S., and Sethi, P.D., Indian Drugs, 1992, vol. 29, p. 376.

    CAS  Google Scholar 

  8. Chowdary, K.P.R., Kunar, K.G., and Rao, D.G., East Pharm., 1998, vol. 41, p. 119.

    CAS  Google Scholar 

  9. Lockley, M.R., Wise, R., and Dent, J., J. Antimicrob. Chemother., 1984, vol. 14, p. 647.

    Article  CAS  Google Scholar 

  10. Pauliukonis, L.T., Musson, D.G., and Bayne, W.F., J. Pharm. Sci., 1984, vol. 73, p. 99.

    Article  CAS  Google Scholar 

  11. Viswanathan, K., Bartlett, M.G., and Stewart, J.T., Rapid Commun. Mass Spectrom., 2001, vol. 15, p. 915.

    Article  Google Scholar 

  12. Rizk, M., Belal, F., Aly, F., and El-Enany, N.M., Talanta, 1998, vol. 46, p. 83.

    Article  CAS  Google Scholar 

  13. Jaber, A.M.Y. and Lounici, A., Anal. Chim. Acta., 1994, vol. 291, p. 53.

    Article  CAS  Google Scholar 

  14. Vilchez, J.L., Araujo, L., Prieto, A., and Navalon, A., J. Pharm. Biomed. Anal., 2001, vol. 26, p. 23.

    Article  CAS  Google Scholar 

  15. Svancara, I., Vytras, K., Barek, J., and Zima, J., Crit. Rev. Anal. Chem., 2001, vol. 31, p. 311.

    Article  CAS  Google Scholar 

  16. Kalchar, K., Electroanalysis, 1990, vol. 2, p. 419.

    Article  Google Scholar 

  17. Bender, M.L. and Komiyama, M., Cyclodextrin Chemistry, New York: Springer, 1977.

    Google Scholar 

  18. Szejtli, J., Cyclodextrin Technology, Boston: Kluwer Academic, 1988.

    Google Scholar 

  19. Matsue, T., Tasaki, C., Fujihira, M., and Osa, T., Bull. Chem. Soc. Jpn., 1983, vol. 56, p. 1305.

    Article  CAS  Google Scholar 

  20. Sheen Hee Kim, Mi-Sook Won, and Yoon-Bo Shim, Bull. Korean Chem. Soc., 1996, vol. 17, p. 342.

    Google Scholar 

  21. Bersier, P.M., Bersier, J., and Klingert, B., Electroanalysis, 1991, vol. 3, p. 443.

    Article  CAS  Google Scholar 

  22. Ferancova, A., Labuda, J., and Fresenius, J., Anal. Chem., 2001, vol. 370, p. 1.

    Article  CAS  Google Scholar 

  23. Ferancova, A., Korgova, E., Miko, R., and Labuda, J., J. Electoranal. Chem., 2000, vol. 492, p. 74.

    Article  CAS  Google Scholar 

  24. Yanez, C., Nunez-Vergara, L.J., and Squella, J.A., Electroanalysis, 2002, vol. 14, p. 559.

    Article  CAS  Google Scholar 

  25. Madhusudana Reddy, T., Sreedhar, M., and Jayarama Reddy, S., Anal. Lett., 2003, vol. 36, p. 1365.

    Article  Google Scholar 

  26. Dang, X.J., Tong, J., and Li, H.J., J. Inclusion Phenom. Mol. Recogn. Chem., 1996, vol. 24, p. 275.

    Article  CAS  Google Scholar 

  27. Gao, F., Yang, P., Xie, J., and Wang, H., J. Inorg. Biochem., 1995, vol. 60, p. 61.

    Article  CAS  Google Scholar 

  28. Swartz, E. and Krull, I.S., Analytical Method Development and Validation, New York: Marcel Dekker, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madhusudana Reddy, T., Balaji, K. & Jayarama Reddy, S. Voltammetric behavior of some fluorinated quinolone antibacterial agents and their differential pulse voltammetric determination in drug formulations and urine samples using a β-cyclodextrin-modified carbon-paste electrode. J Anal Chem 62, 168–175 (2007). https://doi.org/10.1134/S1061934807020128

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934807020128

Navigation