Skip to main content
Log in

Anodic voltammetric behavior of ascorbic acid and its selective determination in pharmaceutical dosage forms and some Rosa species of Turkey

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Ascorbic acid is the most common electroactive biological compound found in some plant species (e.g., Citrus species, Rosa species). The electrochemical oxidation of ascorbic acid was investigated by cyclic, linear sweep, differential pulse (DPV), and square wave (SWV) voltammetry. For analytical purposes, a very well-resolved diffusion-controlled voltammetric peak was obtained in acetate buffer at pH 3.50 for DPV and SWV. The linear response was obtained in the range of 3.52–176.1 μg/mL with a detection limit of 0.88 μg/mL for DPV and 0.52 µg/mL for SWV. Based on this study, simple, rapid, selective, and sensitive voltammetric methods were developed for the determination of ascorbic acid in pharmaceutical dosage forms and Rosa species (R. dumalis ssp. boissieri var. boissieri, R. canina, R. pulverulenta, R. heckeliana ssp. vanheurckiana, and R. montana subsp. woronowii). The results obtained are compared with the HPLC data. The developed methods enable the extracts to be analyzed without the necessity of any time-consuming separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sweetman, S.C., in Martindale: The Complete Drug Reference, 33rd ed., London: Pharmaceutical, 2002, p. 1389.

    Google Scholar 

  2. Hardman, J.G. and Limbird, L.E., Goodmann and Gilmann’s the Pharmacological Basis of Therapeutics, 9th ed. [CD ROM], New York: McGraw-Hill, 1996.

    Google Scholar 

  3. Kurnen, S. and Kesikoglu, C., FABAD J. Pharm. Sci., 1990, vol. 15, p. 121.

    Google Scholar 

  4. Kurucu, S. and Kesikoglu, C., FABAD J. Pharm. Sci., 1992, vol. 17, p. 17.

    Google Scholar 

  5. Kurucu, S., Coşkun, M., and Kartal, M., in The Society for Medicinal Plant Research, 40th Annual Congress, September 1–5, 1992, Trieste, Italy, Abstract Book, 1992, p. 101.

  6. Coşkun, M., Kartal, M., Kurucu, S., Koyuncu, M., and Tanker, N., in Kuşburnu Symposium, September 5–6, 1996, Gümüşhane, Turkey, Abstract Book, 1996, p. 281.

  7. Coşkun, M., Kurucu, S., and Kartal, M., Sci. Pharm., 1997, vol. 65, p. 169.

    Google Scholar 

  8. Kurt, A. and Yamankaradeniz, R., Doǧa Bilim Dergisi, 1983, vol. 17, p. 243.

    Google Scholar 

  9. Muller, L.D., J. Pharm. Biomed. Anal., 2001, vol. 25, p. 985.

    Article  CAS  Google Scholar 

  10. Chang, M.L. and Chang, C.M., J. Pharm. Biomed. Anal., 2003, vol. 33, p. 617.

    Article  CAS  Google Scholar 

  11. Castro, R.N., Azeredo, L.C., Azeredo, M.A.A., and de Sampaio, C.S.T., J. Liq. Chromatogr. R. T., 2001, vol. 24, p. 1015.

    Article  CAS  Google Scholar 

  12. Paim, A.P.S., Almeida, C.M.N.V., Reis, B.F., Lapa, R.A.S., Zagatto, E.A.G., and Lima, J.L.F.C., J. Pharm. Biomed. Anal., 2002, vol. 28, p. 1221.

    Article  CAS  Google Scholar 

  13. Perez-Ruiz, T., Martinez-Lozano, C., Sanz, A., and Guillen, A., J. Pharm. Biomed. Anal., 2004, vol. 34, p. 551.

    Article  CAS  Google Scholar 

  14. Farajzadeh, M.A., and Nagizadeh, S., J. Chin. Chem. Soc., 2002, vol. 49, p. 949.

    CAS  Google Scholar 

  15. Toral, M.I., Lara, N., Richter, P., Tassara, A., Tapia, A.E., and Rodriguez, C., JAOAC Int., 2001, vol. 84, p. 37.

    CAS  Google Scholar 

  16. Noroozifar, M. and Khorasani-Motlagh, M., Turk. J. Chem., 2003, vol. 27, p. 717.

    CAS  Google Scholar 

  17. Ensai, A.A., Rezaei, B., and Movahedinia, H., Spectrochim. Acta, Part A, 2002, vol. 58, p. 2589.

    Article  Google Scholar 

  18. Farajzadeh, M.A. and Nagizadeh, S., J. Chin. Chem. Soc., 2002, vol. 49, p. 619.

    CAS  Google Scholar 

  19. Abdullin, I.F., Turova, G.N., Ziyatdinova, G.K., and Budnikov, G.K., J. Anal. Chem., 2002, vol. 57, p. 353.

    Article  CAS  Google Scholar 

  20. Lin, X.Q. and Gong, J.M., Anal. Chim. Acta, 2004, vol. 507, p. 255.

    Article  CAS  Google Scholar 

  21. Wang, S.F. and Du, D., Sens. Actuators, B, 2004, vol. 97, p. 373.

    Article  Google Scholar 

  22. Roy, P.R., Okajima, T., and Ohsaka, T., J. Electroanal. Chem., 2004, vol. 561, p. 75.

    Article  CAS  Google Scholar 

  23. Arvand, M., Sohrabnezhad, S., Mousavi, M.F., Shamsipur, M., and Zanjanchi, M.A., Anal. Chim. Acta., 2003, vol. 491, p. 193.

    Article  CAS  Google Scholar 

  24. Poumaghi-Azar, M.H., Razmi-Nerbin, H., and Hafezi, B., Electroanalysis, 2002, vol. 14, p. 206.

    Article  Google Scholar 

  25. Sun, R.D., Yen, J.L., and Kong, Q.Z., Chin. J. Anal. Chem., 2001, vol. 29, p. 707.

    Google Scholar 

  26. Ly, S.Y., Chae, J.I., Jung, Y.S., Jung, W.W., Lee, H.J., and Lee, S.H., Nahrung/Food, 2004, vol. 48, p. 201.

    Article  CAS  Google Scholar 

  27. Roy, P.R., Saha, M.S., Okajima, T., and Ohsaka, T., Electroanalysis, 2004, vol. 16, p. 289.

    Article  CAS  Google Scholar 

  28. Ernst, H. and Knoll, M., Anal. Chim. Acta, 2001, vol. 449, p. 129.

    Article  CAS  Google Scholar 

  29. Florou, A.B., Prodromidis, M.I., Tzouwara Karayanni, S.M., and Karayannis, M.I., Anal. Chem. Acta, 2000, vol. 423, p. 107.

    Article  CAS  Google Scholar 

  30. Kissenger, P.T. and Heineman, W.R., Laboratory Techniques in Electroanalytical Chemistry, 2nd ed., New York: Marcel Dekker, 1996.

    Google Scholar 

  31. Kauffmann, J.-M. and Vire, J.-C., Anal. Chim. Acta, 1993, vol. 73, p. 29.

    Google Scholar 

  32. Uslu, B. and Ozkan, S.A., Electrochim. Acta, 2004, vol. 49, p. 4321.

    Article  CAS  Google Scholar 

  33. Ozkan, S.A., Uslu, B., and Aboul-Enein, H.Y., Crit. Rev. Anal. Chem., 2003, vol. 33, p. 155.

    Google Scholar 

  34. Smyth, M.R. and Vos, J.G., Analytical Voltammetry, Amsterdam: Elsevier Science, 1992.

    Google Scholar 

  35. Ziegler, S.J., Meier, B., and Sticher, O., Planta Med., 1986, vol. 52, p. 383.

    Google Scholar 

  36. Forster, G.V., Weiss, W., and Staudinger, H., Liebigs Ann. Chem., 1965, vol. 690, p. 16.

    Google Scholar 

  37. www.petric.com/PUBLIC/librarv/misc/acid_base_pk.htm.

  38. Laviron, E., Roullier, L., and Degrand, C., J. Electroanal. Chem., 1980, vol. 112, p. 11.

    Article  CAS  Google Scholar 

  39. Wang, J., Electroanalytical Techniques in Clinical Chemistry and Laboratory Medicine, New York: VCH, 1996.

    Google Scholar 

  40. Swartz, M.E. and Krull, I.S., Analytical Development and Validation, New York: Marcel Dekker, 1997.

    Google Scholar 

  41. Riley, G.M. and Rosanske, T.W., Development and Validation of Analytical Methods, New York: Elsevier Science, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdurak-Kiliç, C.S., Uslu, B., Dogan, B. et al. Anodic voltammetric behavior of ascorbic acid and its selective determination in pharmaceutical dosage forms and some Rosa species of Turkey. J Anal Chem 61, 1113–1120 (2006). https://doi.org/10.1134/S106193480611013X

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106193480611013X

Keywords

Navigation