Advertisement

Journal of Analytical Chemistry

, Volume 61, Issue 3, pp 266–272 | Cite as

Electroanalytical characteristics of a subnanometer thin-film mercury-carbon electrode in anodic stripping voltammetry with a linear high-rate potential sweep: Determination of Tl(I)

  • G. G. Munteanu
  • S. G. Munteanu
Articles

Abstract

With the example of the determination of Tl(I) with a mercury-carbon electrode generated in situ on a carbon fiber substrate, it is shown that an electrode with a monolayer thickness of the mercury film reduces the quantification limit of the metal as compared to the electrode with a thick mercury film (down to 10−10 M). Studying the electrooxidation kinetics of Tl (Zn, Cd, Pb) showed that the rate constant and the transport coefficient at this electrode are independent of the electrode polarization rate. It is found that the rate constant of the electrode process and the slope of the calibration plot linearly depend on the atomic radius of the metal under study.

Keywords

Analytical Chemistry Mercury Carbon Fiber Atomic Radius Calibration Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muntyanu, G.G., Zh. Anal. Khim., 2004, vol. 59, no. 8, p. 851 [J. Anal. Chem. (Engl. Transl.), vol. 59, no. 8, p. 760].Google Scholar
  2. 2.
    Kozlovskii, M.T., Zebreva, A.I., and Gladyshev, V.P., Amal’gamy i ikh primenenie (Amalgams and Their Application), Alma-Ata: Nauka, 1971.Google Scholar
  3. 3.
    Batley, G.E. and Florence, T.M., J. Electroanal. Chem., 1975, vol. 61, p. 205.CrossRefGoogle Scholar
  4. 4.
    Bonelli, J.E., Taylor, H.E., and Skogerboe, R.K., Anal. Chim. Acta, 1980, vol. 118, no. 2, p. 243.CrossRefGoogle Scholar
  5. 5.
    Kozina, S.A., Zh. Anal. Khim., 2003, vol. 58, no. 10, p. 1067 [J. Anal. Chem. (Engl. Transl.), vol. 58, no. 10, p. 954].Google Scholar
  6. 6.
    Neiman, E. Ya. and Dolgopolova, G.M., Zh. Anal. Khim., 1973, vol. 28, no. 9, p. 1717.Google Scholar
  7. 7.
    Přibil, R., Analytical Applications of EDTA and Related Compounds, Oxford (UK): Pergamon, 1972.Google Scholar
  8. 8.
    Gladyshev, G.P. and Popov, V.A., Radikal’naya polimerizatsiya pri glubokikh stepenyakh prevrashcheniya (Radical Polymerization at High Conversions), Moscow: Nauka, 1974.Google Scholar
  9. 9.
    Rabinovich, V.A. and Khavin, Z.Ya., Kratkii khimicheskii spravochnik (Concise Handbook of Chemistry), Leningrad: Khimiya, 1977.Google Scholar
  10. 10.
    Brainina, Kh.Z., Talanta, 1971, vol. 18, p. 513.CrossRefGoogle Scholar
  11. 11.
    De Vries, W.T. and Van Dalen, E., J. Electroanal. Chem., 1964, vol. 8, p. 367.Google Scholar
  12. 12.
    Hubbard, A.T., J. Electroanal. Chem., 1969, vol. 22, p. 165.Google Scholar
  13. 13.
    Bard, A.J. and Faulkner, L.R., Electrochimie: Principes, méthodes et applications, Paris: Masson, 1983, p. 466.Google Scholar
  14. 14.
    Laviron, E., J. Electroanal. Chem., 1974, vol. 52, p. 355.Google Scholar
  15. 15.
    Shams, E. and Yekehtaz, M., Anal. Sci., 2002, vol. 18, p. 993.CrossRefGoogle Scholar
  16. 16.
    Galus, Z., Teoretyczne podstawy electroanalizy chemicznej (Theoretical Principles of Electrochemical Analysis), Warszawa: Panstwowe Wydawnictwo Naukowe, 1971. Translated under the title Teoreticheskie osnovy elektrokhimicheskogo analiza, Moscow: Mir, 1974, p. 71.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • G. G. Munteanu
    • 1
  • S. G. Munteanu
    • 2
  1. 1.Institute of ChemistryAcademy of Sciences of MoldovaChisinauMoldova
  2. 2.Faculty of ChemistryUniversity of BucharestBucharestRomania

Personalised recommendations