Advertisement

Journal of Analytical Chemistry

, Volume 61, Issue 2, pp 124–128 | Cite as

Highly selective cloud point extraction and preconcentration of trace amounts of silver in water samples using synthesized Schiff’s base followed by flame atomic absorption spectrometric determination

  • F. Shemirani
  • M. R. Jamali
  • R. R. Kozani
  • M. S. Niasari
Articles

Abstract

A simple and useful method employing cloud point extraction is proposed for the preconcentration and separation of silver in water samples. The silver cation reacts with bis(2-mercaptoanil) acetylacetone (BMAA) at pH 6. The resulting compound is subsequently entrapped in the Triton X-114 micelles. After optimization of the complexation and extraction conditions, a preconcentration factor of 50 was obtained (volume of initial sample was 10 mL). As an analytical example, trace amounts of Ag were determined, after preconcentration, in a complex aqueous matrix such as seawater using flame atomic absorption spectrometry. The calibration curve was linear in the range 2–200 ng/mL and the limit of detection was 0.43 ng/mL. The relative standard deviation was lower than 2.4%.

Keywords

Water Sample Relative Standard Deviation Trace Amount Cloud Point Schiff 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brauner, J. and Wood, M., Comp. Biochem. Physiol., 2002, vol. 133C, p. 161.Google Scholar
  2. 2.
    Tercell, T.W. and Peters, J.J., Environ. Toxicol. Chem., 1998, vol. 17, p. 539.Google Scholar
  3. 3.
    Chiba, K., Imamoto, I., and Sacki, M., J. Anal. At. Spectrom., 1992, vol. 7, p. 115.CrossRefGoogle Scholar
  4. 4.
    Rehkämper, M. and Halliday, A.N., Talanta, 1997, vol. 44, p. 663.Google Scholar
  5. 5.
    Singh, R.P. and Pambid, E.R., Analyst, 1990.Google Scholar
  6. 6.
    Chung, Y.S. and Barnes, R.M., J. Anal. At. Spectrom., 1988, vol. 3, p. 1079.CrossRefGoogle Scholar
  7. 7.
    Anderson, P., Davidson, C.M., Littelejohn, D., Ure, M.A., Shand, C.A., and Cheshire, M.V., Anal. Chim. Acta, 1996, vol. 327, p. 53.CrossRefGoogle Scholar
  8. 8.
    Tunçeli, A. and Türker, R.A., Talanta, 2000, vol. 51, p. 889.CrossRefGoogle Scholar
  9. 9.
    Absalan, G. and Ayatollahi Mehrdjardi, M., Sep. Puri. Tech., 2003, vol. 33, p. 95.Google Scholar
  10. 10.
    Sant’Ana, O.D., Wagener, A.L.R., Santelli, R.E., Cassella, R.J., Gallego, M., and Valcarcel, M., Talanta, 2002, vol. 56, p. 673.Google Scholar
  11. 11.
    Mendoza, C.S., Kamata, S., and Sodeyama, K., Anal. Sci., 1996, vol. 12, p. 969.Google Scholar
  12. 12.
    Carti, M., Minero, C., and Degiorgio, V., J. Phys. Chem., 1984, vol. 88, p. 309.Google Scholar
  13. 13.
    Kamaromy-Hiller, G. and Von Wandruszka, R., J. Colloid. Interface Sci., 1996, vol. 177, p. 156.Google Scholar
  14. 14.
    Paleologos, E.K., Stalikas, C.D., and Tzouwara-Karayanmi, S.M., and Karayannis M.I., Anal. Chim. Acta, 2001, vol. 435, p. 49.Google Scholar
  15. 15.
    Chen, J. and Chuan Teo, K., Anal. Chim. Acta, 2001, vol. 434, p. 325.Google Scholar
  16. 16.
    Shemirani, F., Dehghan Abkenar, Sh., Rahnama Kozani, R., and Salavati Niasari, M., Can. J. Chem. (in press).Google Scholar
  17. 17.
    Shemirani, F., Dehghan Abkenar, Sh., Mirroshandel A.A., Salavati Niasari, M., and Rahnama Kozani, R., Anal. Sci., 2003, vol. 19, p. 1453.CrossRefGoogle Scholar
  18. 18.
    Kulichenko, S.A., Doroschuk, V.O., and Lelyushok, S.O., Talanta, 2003, vol. 59, p. 767.CrossRefGoogle Scholar
  19. 19.
    Manzoori, J.L. and Bavili-Tabrizi, A., Microchim. J., 2002, vol. 72, p. 1.Google Scholar
  20. 20.
    Giokas, D.L., Paleologos, E.K., Tzouwara-Karayanni, S.M., and Karayannis M.I., J. Anal. At. Spectrom., 2001, vol. 16, p. 521.CrossRefGoogle Scholar
  21. 21.
    Saitoh, T. and Hinze, W.L., Talanta, 1995, vol. 42, p. 119.CrossRefGoogle Scholar
  22. 22.
    Andreia Mesquita da Silva, M., Lucia Azzolin Frescura, V., and Jose Curtius, A., Spectrochim. Acta, Part B, 2001, vol. 56, p. 1941.CrossRefGoogle Scholar
  23. 23.
    Wu, Y. and Huang, Sh., Analyst, 1998, vol. 123, p. 1535.Google Scholar
  24. 24.
    Stangl, G. and Niessner, R., Int. J. Environ. Anal. Chem., 1995, vol. 58, p. 15.Google Scholar
  25. 25.
    Merino, F., Rubio, S., and Peerez-Bendito, D., J. Chromatogr., A, 2002, vol. 952, p. 1.Google Scholar
  26. 26.
    Sicilia, D., Rubio, S., Peerez-Bendito, D., Maniasso, N., and Zagatto, E.A.G., Anal. Chim. Acta, 1999, vol. 392, p. 29.CrossRefGoogle Scholar
  27. 27.
    Okad, T., Anal. Chem., 1992, vol. 62, p. 2138.Google Scholar
  28. 28.
    Ganong, B.R. and Delmone, J.P., Anal. Biochem., 1993, vol. 193, p. 35.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • F. Shemirani
    • 1
  • M. R. Jamali
    • 1
  • R. R. Kozani
    • 1
  • M. S. Niasari
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of TehranTehranIran
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of KashanKashanIran

Personalised recommendations