Skip to main content
Log in

Preparation of Nanodiamond–Lysozyme–Miramistin Composite and Prospects of Its Application in Heart Valve Prosthetics

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Creation of biocompatible coatings for xenogenic materials that can be used to manufacture prosthetic heart valves is an urgent and, unfortunately, still unsolved problem. It is necessary to obtain a biomaterial that would comply with the mechanical characteristics of a human valve and possess antimicrobial properties, which are of critical importance during the first postsurgical days. Biocompatible coatings can be used for this purpose, and it has turned out that detonation nanodiamonds are suitable for their preparation. The developed functional surface of nanodiamonds allows them to adsorb antibiotics; nanodiamonds are nontoxic and do not cause additional calcification. In this study, we have proposed to prepare a composite coating composed of nanodiamonds, lysozyme, and miramistin as broad-spectrum antimicrobial agents. The use of tritium-labeled nanodiamonds has made it possible to study the distribution of nanodiamond–lysozyme complexes after intravenous administration to mice and showed that the majority of the material remains at the place of injection. It has been shown that nanodiamond–lysozyme–miramistin composites exhibit strong antimicrobial activity, while the nanodiamond–miramistin complex shows no toxicity with respect to Staphylococcus aureus. Thus, the nanodiamond–lysozyme–miramistin composite can be used to create coatings for materials of prosthetic heart valves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bloomfield, P., Choice of heart valve prosthesis, Heart, 2002, vol. 87, no. 6, pp. 583–589. https://doi.org/10.1136/heart.87.6.583

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shao, Z., Tao, T., Xu, H., et al., Recent progress in biomaterials for heart valve replacement: Structure, function, and biomimetic design, View, 2021, vol. 2, no. 6, p. 20200142. https://doi.org/10.1002/VIW.20200142

    Article  Google Scholar 

  3. Ekser, B., Cooper, D.K.C., and Tector, A.J., The need for xenotransplantation as a source of organs and cells for clinical transplantation, Int. J. Surg., 2015, vol. 23, pp. 199–204. https://doi.org/10.1016/j.ijsu.2015.06.066

    Article  PubMed  PubMed Central  Google Scholar 

  4. Findeisen, K., Morticelli, L., Goecke, T., et al., Toward acellular xenogeneic heart valve prostheses: Histological and biomechanical characterization of decellularized and enzymatically deglycosylated porcine pulmonary heart valve matrices, Xenotransplantation, 2020, vol. 27, no. 5, p. e12617. https://doi.org/10.1111/xen.12617

    Article  PubMed  Google Scholar 

  5. Zilla, P., Brink, J., Human, P., et al., Prosthetic heart valves: Catering for the few, Biomaterials, 2008, vol. 29, no. 4, pp. 385–406. https://doi.org/10.1016/j.biomaterials.2007.09.033

    Article  CAS  PubMed  Google Scholar 

  6. Chernysheva, M.G., Badun, G.A., Sinolits, A,V., et al., RF Patent RU2711544, Biomaterial for Making Prostheses of Heart Valves and Method of Producing Biomaterial, 2020.

  7. Tsai, L.W., Lin, Y.C., Perevedentseva, E., et al., Nanodiamonds for medical applications: Interaction with blood in vitro and in vivo, Int. J. Mol. Sci., 2016, vol. 17, no. 7, pp. 5–9. https://doi.org/10.3390/ijms17071111

    Article  CAS  Google Scholar 

  8. Mona, J., Kuo, C.-J., Perevedentseva, E., et al., Adsorption of human blood plasma on nanodiamond and its influence on activated partial thromboplastin time, Diamond Relat. Mater., 2013, vol. 39, pp. 73–77. https://doi.org/10.1016/j.diamond.2013.08.001

    Article  ADS  CAS  Google Scholar 

  9. Turcheniuk, V., Raks, V., Issa, R., et al., Antimicrobial activity of menthol modified nanodiamond particles, Diamond Relat. Mater., 2015, vol. 57, pp. 2–8. https://doi.org/10.1016/j.diamond.2014.12.002

    Article  ADS  CAS  Google Scholar 

  10. Xiao, J., Duan, X., Yin, Q., et al., Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer, Biomaterials, 2013, vol. 34, no. 37, pp. 9648–9656. https://doi.org/10.1016/j.biomaterials.2013.08.056

    Article  CAS  PubMed  Google Scholar 

  11. Huang, H., Pierstorff, E., Osawa, E., et al., Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm, ACS Nano, 2008, vol. 2, no. 2, pp. 203–212. https://doi.org/10.1021/nn7000867

    Article  CAS  PubMed  Google Scholar 

  12. Schrand, A.M., Hens, S.A., and Shenderova, O.A., Nanodiamond particles: Properties and perspectives for bioapplications, Crit. Rev. Solid State Mater. Sci., 2009, vol. 34, nos. 1–2, pp. 18–74. https://doi.org/10.1080/10408430902831987

    Article  ADS  CAS  Google Scholar 

  13. Tinwala, H. and Wairkar, S., Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics, Mater. Sci. Eng., C, 2019, vol. 97, pp. 913–931. https://doi.org/10.1016/j.msec.2018.12.073

    Article  CAS  Google Scholar 

  14. Vaijayanthimala, V., Lee, D.K., Kim, S.V., et al., Na-nodiamond-mediated drug delivery and imaging: Challenges and opportunities, Expert Opin. Drug Delivery, 2015, vol. 12, no. 5, pp. 735–749. https://doi.org/10.1517/17425247.2015.992412

    Article  CAS  Google Scholar 

  15. Chen, M., Pierstorff, E.D., Lam, R., et al., Nanodiamond-mediated delivery of water-insoluble therapeutics, ACS Nano, 2016, vol. 3, no. 7, pp. 2016–2022. https://doi.org/10.1021/nn900480m

    Article  CAS  Google Scholar 

  16. Perevedentseva, E., Lin, Y.-C., and Cheng, C.-L., A review of recent advances in nanodiamond-mediated drug delivery in cancer, Expert Opin. Drug Delivery, 2021, vol. 18, no. 3, pp. 369–382. https://doi.org/10.1080/17425247.2021.1832988

    Article  CAS  Google Scholar 

  17. Chatterjee, A., Perevedentseva, E., Jani, M., et al., Antibacterial effect of ultrafine nanodiamond against Gram-negative bacteria Escherichia coli, J. Biomed. Opt., 2014, vol. 20, no. 5, p. 051014. https://doi.org/10.1117/1.jbo.20.5.051014

    Article  Google Scholar 

  18. Mosolova, A.V., Klimova, L.G., Sukovatykh, B.S., et al., Evaluation of the biocidal activity of a new suture material impregnated with Miramistin, Vestn. Volgograd. Gos. Med. Univ., 2021, vol. 18, no. 1, pp. 31–35. https://doi.org/10.19163/1994-9480-2021-1(77)-31-35

    Article  Google Scholar 

  19. Dunaevskii, A.M. and Kirichenko, I.M., Clinical justification for the use of Miramistin in the treatment of infectious and inflammatory diseases of the respiratory system. Literature review, Poliklinika, 2013, pp. 6–12.

    Google Scholar 

  20. Chernysheva, M.G., Melik-Nubarov, N.S., Grozdova, I.D., et al., Reduction of cytotoxicity of Myramistin by adsorption on nanodiamonds, Mendeleev Commun., 2017, vol. 27, no. 4, pp. 421–423. https://doi.org/10.1016/j.mencom.2017.07.036

    Article  CAS  Google Scholar 

  21. Chernysheva, M.G., Shnitko, A.V., Skrabkova, H.S., et al., Peculiarities of alkylamidopropyldimethylbenzylammonium (Miramistin) in the relationship to lysozyme in comparison with quaternary ammonium surfactants: Coadsorption at the interfaces, enzymatic activity and molecular docking, Colloids Surf., A, 2021, vol. 629, p. 127503. https://doi.org/10.1016/j.colsurfa.2021.127503

    Article  CAS  Google Scholar 

  22. Chaschin, I.S., Badun, G.A., Chernysheva, M.G., et al., Structural and mechanical characteristics of collagen tissue coated with chitosan in a liquid CO2/water system at different pressures, J. Mech. Behav. Biomed. Mater., 2019, vol. 94, pp. 213–221. https://doi.org/10.1016/j.jmbbm.2019.03.012

    Article  CAS  PubMed  Google Scholar 

  23. Badun, G.A., Chernysheva, M.G., Yakovlev, R.Y., et al., A novel approach radiolabeling detonation nanodiamonds through the tritium thermal activation method, Radiochim. Acta, 2014, vol. 102, no. 10, pp. 941–946. https://doi.org/10.1515/ract-2013-2155

    Article  CAS  Google Scholar 

  24. Badun, G.A. and Chernysheva, M.G., Tritium thermal activation method. Features of application, modern achievements, and further development prospects, Radiochemistry, 2023, vol. 65, no. 2, pp. 185–197. https://doi.org/10.1134/S1066362223020054

    Article  CAS  Google Scholar 

  25. GOST (State Standard) R ISO 11737-1-2000: Sterilization of Medical Devices, Microbiological Methods, Part 1. Estimation of Population of Microorganisms on Products, 2014.

  26. Chernysheva, M.G., Badun, G.A., Sinolits, A.V., et al., Tritium-probe method in a study of adsorption layers of lysozyme on the surface of detonation nanodiamonds, Radiochemistry, 2021, vol. 63, no. 2, pp. 227–234. https://doi.org/10.1134/S1066362221020132

    Article  CAS  Google Scholar 

  27. Petit, T. and Puskar, L., FTIR spectroscopy of nanodiamonds: Methods and interpretation, Diamond Relat. Mater., 2018, vol. 89, pp. 52–66. https://doi.org/10.1016/j.diamond.2018.08.005

    Article  ADS  CAS  Google Scholar 

  28. Aramesh, M., Shimoni, O., Ostrikov, K., et al., Surface charge effects in protein adsorption on nanodiamonds, Nanoscale, 2015, vol. 7, no. 13, pp. 5726–5736. https://doi.org/10.1039/C5NR00250H

  29. Perevedentseva, E., Cheng, C.-Y., Chung, P.-H., et al., The interaction of the protein lysozyme with bacteria E. coli observed using nanodiamond labelling, Nanotechnology, 2007, vol. 18, no. 31, p. 315102. https://doi.org/10.1088/0957-4484/18/31/315102

    Article  CAS  Google Scholar 

  30. Liu, Y.L. and Sun, K.W., Protein functionalized nanodiamond arrays, Nanoscale Res. Lett., 2010, vol. 5, no. 6, pp. 1045–1050. https://doi.org/10.1007/s11671-010-9600-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perevedentseva, E., Cai, P.-J., Chiu, Y.-C., et al., Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications, Langmuir, 2011, vol. 27, no. 3, pp. 1085–1091. https://doi.org/10.1021/la103155c

    Article  CAS  PubMed  Google Scholar 

  32. Levashov, P.A., Sedov, S.A., Shlpovskov, S., et al., Quantitative turbidimetric assay of enzymatic Gram-negative bacteria lysis, Anal. Chem., 2010, vol. 82, no. 5, pp. 2161–2163. https://doi.org/10.1021/ac902978u

    Article  CAS  PubMed  Google Scholar 

  33. Matolygina, D.A., Dushutina, N.S., Ovchinnikova, E.D., et al., Enzymatic lysis of living microbial cells: A universal approach to calculating the rate of cell lysis in turbidimetric measurements, Moscow Univ. Chem. Bull., 2018, vol. 73, no. 2, pp. 47–52. https://doi.org/10.3103/S0027131418020104

    Article  Google Scholar 

  34. Lu, W.-J., Smirnov, S.A., Levashov, P.A., General characteristics of the influence of surfactants on the bacteriolytic activity of lysozyme based on the example of enzymatic lysis of Lactobacillus plantarum cells in the presence of Tween 21 and SDS, Biochem. Biophys. Res. Commun., 2021, vol. 575, pp. 73–77. https://doi.org/10.1016/j.bbrc.2021.08.060

    Article  CAS  PubMed  Google Scholar 

  35. Chernysheva, M.G., Chaschin, I.S., Badun, G.A., et al., Novel nanodiamond coatings for durable xenogenic heart valve prostheses: Mechanical properties and in vivo stability, Colloids Surf., A, 2023, vol. 656, p. 130373. https://doi.org/10.1016/j.colsurfa.2022.130373

    Article  CAS  Google Scholar 

  36. Badun, G.A., Chernysheva, M.G., Gus’kov, A.V., et al., Adsorption of alkyltrimethylammonium bromides on nanodiamonds, Fullerenes, Nanotubes Carbon Nanostruct., 2020, vol. 28, no. 5, pp. 361–367. https://doi.org/10.1080/1536383X.2019.1685982

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-23-00019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Chernysheva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All experiments with mice were performed according to the Appendix A “Guidelines for care and use of laboratory animals,” European convention on the protection of vertebrate animals used in experiments or for other scientific purposes (ETS no. 123). The protocol of the study was approved by the Local Ethic Committee of the Petrov National Medical Research Center of Oncology (no. 14 of October 30, 2018).

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interes-t.

Additional information

Translated by A. Kirilin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernysheva, M.G., Badun, G.A., Popov, A.G. et al. Preparation of Nanodiamond–Lysozyme–Miramistin Composite and Prospects of Its Application in Heart Valve Prosthetics. Colloid J 86, 120–129 (2024). https://doi.org/10.1134/S1061933X23600987

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600987

Keywords:

Navigation