Skip to main content
Log in

Effect of Biological Contamination of Copper Surfaces with Extreme Wettability on Their Antibacterial Properties

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Bacterial health care-associated infections (HCAI) are one of the acute problems of modern healthcare. One of the promising directions for solving this problem is the development of materials that either have a bactericidal effect against HCAI pathogens or prevent the transmission of bacteria deposited on their surface by patients and staff contacts with such surfaces. In this work, the antibacterial effectiveness of copper contact surfaces with different wettability was investigated. Particular attention was paid to studying the effect on this efficacy of surface contamination by both human contact sweat and bacterial life-supporting substances, using a peptone solution as an example. Due to the high cost of copper, the possibility of replacing bulk copper material with less expensive sprayed copper-coated materials was also investigated. The test results showed that the bactericidal efficacy against Staphylococcus aureus strain of both control copper and superhydrophilic copper samples, as well as of sputtered copper films, is close to 100% and almost unchanged after contamination with peptone solution or sweat excretions. Superhydrophobic copper surfaces have less bactericidal efficacy, but due to the non-wettability effect and low cell adhesion to such surfaces, they remain uncontaminated longer and thus also promote reducing the transmission of infections through the touch surfaces made of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Suksatan, W., Jasim, S.A., Widjaja, G., Jalil, A.T., Chupradit, S., Ansari, M.J., Mustafa, Y.F., Hammoodi, H.A., and Mohammadi, M.J., Assessment effects and risk of nosocomial infection and needle sticks injuries among patients and health care workers, Toxicol. Rep., 2022, vol. 9, pp. 284–292. https://doi.org/10.1016/j.toxrep.2022.02.013

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nimer, N.A., Nosocomial infection and antibiotic-resistant threat in the middle east, Infect. Drug Resist., 2022, vol. 15, pp. 631–639. https://doi.org/10.2147/IDR.S351755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Du, Q., Zhang, D., Hu, W., Li, X., Xia, Q., Wen, T., and Jia, H., Nosocomial infection of COVID‑19: A new challenge for healthcare professionals, Int. J. Mol. Med., 2021, vol. 47, no. 4, p. 31. https://doi.org/10.3892/ijmm.2021.4864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. World Health Organization, The Burden of Health Care-Associated Infection Worldwide, World Health Organization, 2010.

    Google Scholar 

  5. Ananda, T., Modi, A., Chakraborty, I., Managuli, V., Mukhopadhyay, C., and Mazumder, N., Nosocomial infections and role of nanotechnology, Bioengineering, 2022, vol. 9, no. 2, p. 51. https://doi.org/10.3390/bioengineering9020051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gold, K., Slay, B., Knackstedt, M., and Gaharwar, A.K., Antimicrobial activity of metal and metal-oxide based nanoparticles, Advanced Therapeutics, 2018, vol. 1, no. 3, p. 1700033. https://doi.org/10.1002/adtp.201700033

    Article  CAS  Google Scholar 

  7. Hobman, J.L. and Crossman, L.C., Bacterial antimicrobial metal ion resistance, J. Med. Microbiol., 2015, vol. 64, no. 5, pp. 471–497. https://doi.org/10.1099/jmm.0.023036-0

    Article  CAS  PubMed  Google Scholar 

  8. Psomas, G., Copper (II) and zinc (II) coordination compounds of non-steroidal anti-inflammatory drugs: Structural features and antioxidant activity, Coord. Chem. Rev., 2020, vol. 412, p. 213259. https://doi.org/10.1016/j.ccr.2020.213259

    Article  CAS  Google Scholar 

  9. Ustundag, B., Yilmaz, E., Dogan, Y., Akarsu, S., Canatan, H., Halifeoglu, I., Cikim, G., and Aygun, A.D., Levels of cytokines (IL-1β, IL-2, IL-6, IL-8, TNF-α) and trace elements (Zn, Cu) in breast milk from mothers of preterm and term infants, Mediators Inflammation, 2005, vol. 2005, no. 6, pp. 331–336. https://doi.org/10.1155/MI.2005.331

    Article  CAS  Google Scholar 

  10. Vincent, M., Hartemann, P., and Engels-Deutsch, M., Antimicrobial applications of copper, Int. J. Hyg. Environ. Health, 2016, vol. 219, no. 7, part A, pp. 585–591. https://doi.org/10.1016/j.ijheh.2016.06.003

  11. Vincent, M., Duval, R.E., Hartemann, P., and Engels-Deutsch, M., Contact killing and antimicrobial properties of copper, J. Appl. Microbiol., 2018, vol. 124, no. 5, pp. 1032–1046. https://doi.org/10.1111/jam.13681

    Article  CAS  PubMed  Google Scholar 

  12. Grass, G., Rensing, C., and Solioz, M., Metallic copper as an antimicrobial surface, Appl. Environ. Micr-obiol., 2011, vol. 77, no 5, pp. 1541–1547. https://doi.org/10.1128/AEM.02766-10

    Article  CAS  Google Scholar 

  13. Dollwet, H.H.A. and Sorenson, J.R.J., Historic uses of copper compounds in medicine, Trace Elem. Med., 1985, vol. 2, no. 2, pp. 80–87.

    Google Scholar 

  14. Inkinen, J., Makinen, R., Keinanen-Toivola, M.M., Nordstrom, K., and Ahonen, M., Copper as an antibacterial material in different facilities, Lett. Appl. Microbiol., 2017, vol. 64, no. 1, pp. 19–26. https://doi.org/10.1111/lam.12680

    Article  CAS  PubMed  Google Scholar 

  15. Arendsen, L.P., Thakar, R., and Sultan, A.H., The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology, Clin. Microbiol. Rev., 2019, vol. 32, no. 4, p. e00125-18. https://doi.org/10.1128/cmr.00125-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Romaña, D.L., Olivares, M., Uauy, R., and Araya, M., Risks and benefits of copper in light of new insights of copper homeostasis, J. Trace Elem. Med. Bio-l., 2011, vol. 25, no. 1, pp. 3–13. https://doi.org/10.1016/j.jtemb.2010.11.004

    Article  CAS  Google Scholar 

  17. Turnlund, J.R., Keyes, W.R., Kim, S.K., and Domek, J.M., Long-term high copper intake: Effects on indexes of copper status, antioxidant status, and immune function in young men, Am. J. Clin. Nutr., 2004, vol. 79, no. 6, pp. 1037–1044. https://doi.org/10.1093/ajcn/79.6.1037

    Article  CAS  PubMed  Google Scholar 

  18. Pelgrom, S.M.G.J., Lock, R.A.C., Balm, P.H.M., and Bonga, S.W., Integrated physiological response of tilapia, Oreochromis mossambicus, to sublethal copper exposure, Aquat. Toxicol., 1995, vol. 32, no. 4, pp. 303–320. https://doi.org/10.1016/0166-445X(95)00004-N

    Article  CAS  Google Scholar 

  19. Emelyanenko, A.M., Kaminsky, V.V., Pytskii, I.S., Emelyanenko, K.A., Domantovsky, A.G., Chulkova, E.V., Shiryaev, A.A., Aleshkin, A.V., and Boinovich, L.B., Antimicrobial activity and degradation of superhydrophobic magnesium substrates in bacterial media, Metals, 2021, vol. 11, no. 7, p. 1100. https://doi.org/10.3390/met11071100

    Article  CAS  Google Scholar 

  20. Boinovich, L.B., Emelyanenko, K.A., Domantov-sky, A.G., Chulkova, E.V., Shiryaev, A.A., and Emelyanenko, A.M., Pulsed laser induced triple layer copper oxide structure for durable polyfunctionality of superhydrophobic coatings, Adv. Mater. Interfaces, 2018, vol. 5, no. 21, p. 1801099. https://doi.org/10.1002/admi.201801099

    Article  CAS  Google Scholar 

  21. Emelyanenko, A.M., Kaminskii, V.V., Pytskii, I.S., Domantovsky, A.G., Emelyanenko, K.A., Alesh-kin, A.V., and Boinovich, L.B., Antibacterial properties of superhydrophilic textured copper in contact with bacterial suspensions, Bull. Exp. Biol. Med., 2020, vol. 168, pp. 488–491. https://doi.org/10.1007/s10517-020-04737-5

    Article  CAS  PubMed  Google Scholar 

  22. Rosli, N.A., Teow, Y.H., and Mahmoudi, E., Current approaches for the exploration of antimicrobial activities of nanoparticles, Sci. Technol. Adv. Mater., 2021, vol. 22, no. 1, pp. 885–907. https://doi.org/10.1080/14686996.2021.1978801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Emelyanenko, A.M., Pytskii, I.S., Kaminsky, V.V., Chulkova, E.V., Domantovsky, A.G., Emelyanen-ko, K.A., Sobolev, V.D., Aleshkin, A.V., and Boinovich, L.B., Superhydrophobic copper in biological liquids: Antibacterial activity and microbiologically induced or inhibited corrosion, Colloids Surf., B, 2020, vol. 185, p. 110622. https://doi.org/10.1016/j.colsurfb.2019.110622

    Article  CAS  Google Scholar 

  24. Zarasvand, K.A. and Rai, V.R., Microorganisms: Induction and inhibition of corrosion in metals, Int. Biodeterior. Biodegrad., 2014, vol. 87, pp. 66–74. https://doi.org/10.1016/j.ibiod.2013.10.023

    Article  CAS  Google Scholar 

  25. Kaminsky, V.V., Emelyanenko, A.M., Aleshkin, A.V., Emelyanenko, K.A., and Boinovich, L.B., Efficiency and mechanisms of bactericidal effect of superhydrophilic magnesium alloy surface against Escherichia coli, Microbiology, 2021, vol. 90, pp. 643–646. https://doi.org/10.1134/S002626172105009X

    Article  CAS  Google Scholar 

  26. Boinovich, L.B., Kaminsky, V.V., Domantovsky, A.G., Emelyanenko, K.A., Aleshkin, A.V., Zulkarneev, E.R., Kiseleva, I.A., and Emelyanenko, A.M., Bactericidal activity of superhydrophobic and superhydrophilic copper in bacterial dispersions, Langmuir, 2019, vol. 35, no. 7, pp. 2832–2841. https://doi.org/10.1021/acs.langmuir.8b03817

    Article  CAS  PubMed  Google Scholar 

  27. Boinovich, L.B., Modin, E.B., Aleshkin, A.V., Emelyanenko, K.A., Zulkarneev, E.R., Kiseleva, I.A., Vasiliev, A.L., and Emelyanenko, A.M., Effective antibacterial nanotextured surfaces based on extreme wettability and bacteriophage seeding, ACS Appl. Nano Mater., 2018, vol. 1, no. 3, pp. 1348–1359. https://doi.org/10.1021/acsanm.8b00090

    Article  CAS  Google Scholar 

  28. Baker, L.B. and Wolfe, A.S., Physiological mechanisms determining eccrine sweat composition, Eur. J. Appl. Physiol., 2020, vol. 120, pp. 719–752. https://doi.org/10.1007/s00421-020-04323-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Verde, T., Shephard, R.J., Corey, P., and Moore, R., Sweat composition in exercise and in heat, J. Appl. Physiol., 1982, vol. 53, no. 6, pp. 1540–1545. https://doi.org/10.1152/jappl.1982.53.6.1540

    Article  CAS  PubMed  Google Scholar 

  30. Wilke, K., Martin, A., Terstegen, L., and Biel, S.S., A short history of sweat gland biology, Int. J. Cosmet. Sci., 2007, vol. 29, no. 3, pp. 169–179. https://doi.org/10.1111/j.1467-2494.2007.00387.x

    Article  CAS  PubMed  Google Scholar 

  31. Collins, K.J., Composition of palmar and forearm sweat, J. Appl. Physiol., 1962, vol. 17, no. 1, pp. 99–102. https://doi.org/10.1152/jappl.1962.17.1.99

    Article  CAS  PubMed  Google Scholar 

  32. Picardo, M., Ottaviani, M., Camera, E., and Mastrofrancesco, A., Sebaceous gland lipids, Dermato-Endocrinology, 2009, vol. 1, no. 2, pp. 68–71. https://doi.org/10.4161/derm.1.2.8472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Picknett, R.G. and Bexon, R., The evaporation of sessile or pendant drops in still air, J. Colloid Interface Sci., 1977, vol. 61, no. 2, pp. 336–350. https://doi.org/10.1016/0021-9797(77)90396-4

    Article  CAS  Google Scholar 

  34. Bourges-Monnier, C. and Shanahan, M.E.R., Influence of evaporation on contact angle, Langmuir, 1995, vol. 11, no. 7, pp. 2820–2829. https://doi.org/10.1021/la00007a076

    Article  CAS  Google Scholar 

  35. Bennacer, R. and Ma, X., Effect of temperature and surfactants on evaporation and contact line dynamics of sessile drops, Heliyon, 2022, vol. 8, no. 11, p. e11716. https://doi.org/10.1016/j.heliyon.2022.e11716

    Article  PubMed  PubMed Central  Google Scholar 

  36. Anantharaju, N., Panchagnula, M., and Neti, S., Evaporating drops on patterned surfaces: Transition from pinned to moving triple line, J. Colloid Interface Sci., 2009, vol. 337, no. 1, pp. 176–182. https://doi.org/10.1016/j.jcis.2009.04.095

    Article  CAS  PubMed  Google Scholar 

  37. Misyura, S.Y., Andryushchenko, V.A., Morozov, V.S., and Smovzh, D.V., The effect of textured surface on graphene wettability and droplet evaporation, J. Mater. Sci., 2022, vol. 57, no. 3, pp. 1850–1862. https://doi.org/10.1007/s10853-021-06853-7

    Article  CAS  Google Scholar 

  38. Chulkova, E.V., Emelyanenko, K.A., Emelyanenko, A.M., and Boinovich, L.B., Elimination of wetting study flaws in unsaturated vapors based on Laplace fit parameters, Surf. Innovations, 2022, vol. 10, no. 1, pp. 21–24. https://doi.org/10.1680/jsuin.21.00012

    Article  Google Scholar 

Download references

Funding

The study of antibacterial properties of sprayed copper coatings was carried out under the Russian Science Foundation grant no. 23-73-30004, https://rscf.ru/project/23-73-30004/. The effect of protein contaminants and contaminants associated with human skin contact on antibacterial properties of surfaces with extreme wettability was studied under RFBR grant 20-53-56066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. S. Omran.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omran, F.S., Kaminsky, V.V., Emelyanenko, K.A. et al. Effect of Biological Contamination of Copper Surfaces with Extreme Wettability on Their Antibacterial Properties. Colloid J 85, 757–769 (2023). https://doi.org/10.1134/S1061933X23600641

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600641

Keywords:

Navigation