Skip to main content
Log in

Planar Supramolecular Systems: Assembly and Functional Potential

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

In this review, we present one of the main areas of the work of the Laboratory of Physical Chemistry of Supramolecular Systems, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, devoted to studying monolayers and ultrathin films on liquid and solid surfaces. Numerous problems are discussed concerning the peculiarities of the supramolecular organization, behavior, and functional potential of these traditional colloidal systems. The article describes diverse examples of systems that form ultrathin organized films at different interfaces and the processes occurring in them, thereby reflecting the contemporary stage of the interconnection of related fields of science (colloid and supramolecular chemistry, nanotechnology, biomimetics, sensorics, etc.). Such a combination makes it possible to develop new intelligent nanostructured devices. Complexation in ultrathin layers of ligands on liquid and solid substrates is considered in connection with the use thereof as sensitive sensory elements in systems with reduced dimensionality. Substantial attention is focused on the aggregation behavior of diverse ligands and topochemical reactions in organized 2D ensembles, development of new methods for preparing two-dimensional organic networks, and creation of highly stable supramolecular devices based thereon. In the light of the features of 2D systems, several types of mechanochemical transformations occurring under the action of two-dimensional compression–expansion are considered: the phenomenon of redox isomerism in monolayers of lanthanide bis-phthalocyaninates, the phenomenon of forced axial coordination in tetrapyrrole complexes of nickel with a change in its spin number, and the phenomenon of the reversible formation of excimers. Especial attention is given to the problems concerning the behavior of organic photochromes at interfaces and the perspectives of developing molecular switches based on photosensitive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.

Similar content being viewed by others

REFERENCES

  1. Arslanov, V.V., Nanotekhnologiya. Kolloidnaya i supramolekulyarnaya khimiya: Entsiklopedicheskii spravochnik. Bolee 1000 slovarnykh statei, uporyadochennykh po angliiskim ekvivalentam (Nanotechnology. Colloidal and Supramolecular Chemistry: Encyclopedic Handbook. Over 1000 Entries Sorted by Their English Equivalents), Moscow: Lenand, 2015.

  2. Kang, Y., Liu, K., and Zhang, X., Langmuir, 2014, vol. 30, no. 21, p. 5989.

    Article  CAS  Google Scholar 

  3. Ariga, K., Langmuir, 2020, vol. 36, no. 26, p. 7158.

    Article  CAS  Google Scholar 

  4. Oliveira, O.N., Jr., Caseli, L., and Ariga, K., Chem. Rev., 2022, vol. 122, no. 6, p. 6459.

    Article  Google Scholar 

  5. Yu, X. and Zhang, J., Macrocyclic Polyamines: Synthesis and Applications, John Wiley & Sons, 2018.

    Book  Google Scholar 

  6. Verdejo, B., Inclán, M., Clares, M.P., et al., Chemosensors, 2021, vol. 10, no. 1, p. 1.

    Article  Google Scholar 

  7. Joshi, T., Graham, B., and Spiccia, L., Acc. Chem. Res., 2015, vol. 48, no. 8, p. 2366.

    Article  CAS  Google Scholar 

  8. Shinoda, S., Chem. Soc. Rev., 2013, vol. 42, no. 4, p. 1825.

    Article  CAS  Google Scholar 

  9. Kalinina, M.A., Arslanov V.V, Tsar’kova, L.A., et al., Kolloidn. Zh., 2000, vol. 62, no. 5, p. 610.

    Google Scholar 

  10. Kalinina, M.A., Arslanov, V.V., Tsar’kova, L.A. et al., Colloid J., 2001, vol 63, no. 3, p. 312.

    Article  CAS  Google Scholar 

  11. Kalinina, M.A., Arslanov V.V, and Vatsadze, S.Z., Colloid J., 2003, vol. 65, no. 2, p. 177.

    Article  CAS  Google Scholar 

  12. Kalinina, M.A., Arslanov, V.V., Turygin, D.S., et al., Colloid J., 2009, vol. 71, no. 5, p. 627.

    Article  CAS  Google Scholar 

  13. Kalinina, M.A., Arslanov, V.V., Zheludeva, S.I., et al., Thin Solid Films, 2005, vol. 472, no. 1.

  14. Kalinina, M.A., Arslanov, V.V., Turygin, D.S., et al., Russ. J. Phys. Chem., 2008, vol. 82, no. 4, p. 623.

    Article  CAS  Google Scholar 

  15. Kalinina, M.A. and Arslanov, V.V., Colloid J., 2002, vol. 64, no. 1, p. 49.

    Article  CAS  Google Scholar 

  16. Kalinina, M.A., Raitman, O.A., Selector, S.L., et al., IEEE Sens. J., 2006, vol. 6, no. 2, p. 450.

    Article  CAS  Google Scholar 

  17. Turygin, D.S., Subat, M., Raitman, O.A., et al., Langmuir, 2007, vol. 23, no. 5, p. 2517.

    Article  CAS  Google Scholar 

  18. Turygin, D.S., Subat, M., Raitman, O.A., et al., Angew. Chem., Int. Ed., 2006, vol. 45, no. 32, p. 5340.

    Article  CAS  Google Scholar 

  19. Turygin, D.S., Subat, M., and Arslanov, V., V et al., Chem.-Eur. J., 2010, vol. 16, no. 34, p. 10560.

    Article  CAS  Google Scholar 

  20. Kaur, N., Inorg. Chim. Acta, 2022, p. 120917.

  21. Ranyuk, E., Ermakova, E.V., Bovigny, L., et al., New J. Chem., 2014, vol. 38, no. 1, p. 317.

    Article  CAS  Google Scholar 

  22. Ermakova, E., Michalak, J., Meyer, M., et al., Org. Lett., 2013, vol. 15, no. 3, p. 662.

    Article  CAS  Google Scholar 

  23. Arslanov, V., Ermakova, E., Michalak, J., et al., Colloids Surf., A, 2015, vol. 483, p. 193.

    Article  CAS  Google Scholar 

  24. Ermakova, E.V., Bessmertnykh-Lemeune, A.G., Meyer, M. et al., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 1, p. 6.

    Article  CAS  Google Scholar 

  25. Ermakova, E., Raitman, O., Shokurov, A., et al., Analyst, 2016, vol. 141, no. 6, p. 1912.

    Article  CAS  Google Scholar 

  26. Qi, Z.-L., Cheng, Y.-H., Xu, Z., et al., Int. J. Mol. Sci., 2020, vol. 21, no. 16, p. 5839.

    Article  CAS  Google Scholar 

  27. Özbek, O., Isildak, Ö., and Berkel, C., J. Inclusion Phenom. Macrocyclic Chem., 2020, vol. 98, no. 1, p. 1.

    Article  Google Scholar 

  28. Ermakova, E.V., Enakieva, Y.Y., Nefedov, S.E., et al., Eur. J. Org. Chem., 2019, vol. 2019, no. 20, p. 3146.

    Article  CAS  Google Scholar 

  29. Ermakova, E.V., Koroleva, E.O., and Shokurov, A.V., et al., Dyes Pigm., 2021, vol. 186, p. 108967.

    Google Scholar 

  30. Bhardwaj, V., Nurchi, V.M., and Sahoo, S.K., Pharmaceuticals, 2021, vol. 14, no. 2, p. 123.

    Article  CAS  Google Scholar 

  31. Dalmieda, J. and Kruse, P., Sensors, 2019, vol. 19, no. 23, p. 5134.

    Article  CAS  Google Scholar 

  32. Kalinina, M.A., Golubev, N.V., Raitman, O.A., et al., Sens. Actuators, B, 2006, vol. 114, no. 1, p. 19.

    Article  CAS  Google Scholar 

  33. Kalinina, M.A., Raitman, O.A., Turygin, D.S., et al., Russ. J. Phys. Chem., 2008, vol. 82, no. 8, p. 1334.

    Article  CAS  Google Scholar 

  34. Li, J., Yim, D., Jang, W.-D., et al., Chem. Soc. Rev., 2017, vol. 46, no. 9, p. 2437.

    Article  CAS  Google Scholar 

  35. Móczár, I. and Huszthy, P., Chirality, 2019, vol. 31, no. 2, p. 97.

    Article  Google Scholar 

  36. Alexandrova, A.V., Shcherbina, M.A., Shokurov, A.V., et al., Macroheterocycles, 2020, vol. 13, no. 3, p. 277.

    Article  CAS  Google Scholar 

  37. Shokurov, A.V., Shcherbina, M.A., and Bakirov, A.V., et al., Langmuir, 2018, vol. 34, no. 26, p. 7690.

    Article  CAS  Google Scholar 

  38. Shokurov, A.V., Alexandrova, A.V., Shcherbina, M.A., et al., Soft Matter, 2020, vol. 16, no. 43, p. 9857.

    Article  CAS  Google Scholar 

  39. Alexandrova, A.V., Matyushenkova, V.M., Shokurov, A.V., et al., Langmuir, 2022 (in press).

  40. Shokurov, A.V., Alexandrova, A.V., Shepeleva, I.I., et al., Mendeleev Commun., 2019, vol. 29, no. 1, p. 74.

    Article  CAS  Google Scholar 

  41. Arslanov, V.V., Uspekhi Khimii, 1991, vol. 60, no. 6, p. 1155.

    CAS  Google Scholar 

  42. Arslanov, V.V., Uspekhi Khimii, 1994, vol. 63, no. 1, p. 3.

    CAS  Google Scholar 

  43. Carpick, R.W., Sasaki, D.Y., Marcus, M.S., et al., J. Phys.: Condens. Matter, 2004, vol. 16, no. 23, p. R679.

    CAS  Google Scholar 

  44. Champaiboon, T., Tumcharern, G., Potisatityuenyong, A., et al., Sens. Actuators, B, 2009, vol. 139, no. 2, p. 532.

    Article  CAS  Google Scholar 

  45. Spevak, W., Nagy, J.O., and Charych, D.H., Molecular Assemblies of Functionalized Polydiacetylenes, Wiley Online Library, 1995.

    Book  Google Scholar 

  46. Yoon, J., Chae, S.K., and Kim, J.-M., J. Am. Chem. Soc., 2007, vol. 129, no. 11, p. 3038.

    Article  CAS  Google Scholar 

  47. Dubas, A.L., Arslanov, V.V., and Kalinina, M.A., Co-lloid J., 2015, vol. 77, no. 4, p. 438.

    Article  CAS  Google Scholar 

  48. Arslanov, V.V., Sheinina, L.S., Bulgakova, R.A., et al., Langmuir, 1995, vol. 11, no. 10, p. 3953.

    Article  CAS  Google Scholar 

  49. Pearce, P.J., Davidson, R.G., and Morris, C.E.M., J. Appl. Polym. Sci., 1983, vol. 28, no. 1, p. 283.

    Article  CAS  Google Scholar 

  50. Stark, E.B., Ibrahim, A.M., Munns, T.E., et al., J. A-ppl. Polym. Sci., 1985, vol. 30, no. 4, p. 1717.

    Article  CAS  Google Scholar 

  51. Parsons, R., Croat. Chem. Acta, 1976, vol. 48, no. 4, p. 597.

    CAS  Google Scholar 

  52. Prats, M., Teissié, J., and Tocanne, J.-F., Nature, 1986, vol. 322, no. 6081, p. 756.

    Article  CAS  Google Scholar 

  53. Arslanov, B.B., Sheinina L.S., Bulgakova P.A., et al., Kolloidn. Zh., 1995, vol. 57, no. 1, p. 5.

    Google Scholar 

  54. Arslanov, V.V., Sheinina, L.S., and Bulgakova, R.A., Thin Solid Films, 1999, vol. 346, nos. 1–2, p. 238.

    Article  CAS  Google Scholar 

  55. Arslanov, V.V., Sheinina, L.S., and Kalinina, M.A., Prot. Met., 2008, vol. 44, no. 1, p. 1.

    Article  CAS  Google Scholar 

  56. Song, Y.-F. and Tsunashima, R., Chem. Soc. Rev., 2012, vol. 41, no. 22, p. 7384.

    Article  CAS  Google Scholar 

  57. Arslanov, V.V., Shejnina, L.S., and Bulgakova, R.A., Colloid J., 1997, vol. 59, no. 4, p. 444.

    Google Scholar 

  58. Dubas, A.L., Arslanov, V.V., Gagina, I.A., et al., Colloid J., 2013, vol. 75, no. 4, p. 378.

    Article  CAS  Google Scholar 

  59. Ermakova, E., V., Enakieva, Yu.Yu., Zvyagina, A.I., et al., Makrogeterotsikly, 2016, vol. 9., no. 4, p. 378.

    CAS  Google Scholar 

  60. Ermakova, E.V., Meshkov, I.N., Enakieva, Yu, et al., Surf. Sci., 2017, vol. 660, p. 39.

    Article  CAS  Google Scholar 

  61. Ermakova, E., V., Enakieva, Yu.Yu., Meshkov, I.N., et al., Makrogeterotsikly, 2017, vol. 10, no. 4, p. 496.

    CAS  Google Scholar 

  62. Ermakova, E.V., Ezhov, A.A., Baranchikov, A.E., et al., J. Colloid Interface Sci., 2018, vol. 530, p. 521.

    Article  CAS  Google Scholar 

  63. Shokurov, A.V., Kutsybala, D.S., Martynov, A.G., et al., Langmuir, 2020, vol. 36, no. 6, p. 1423.

    Article  CAS  Google Scholar 

  64. Shokurov, A., Kutsybala, D., Martynov, A., et al., Macrogeterocycles, 2019, vol. 12, no. 3, p. 264.

    Article  CAS  Google Scholar 

  65. Selektor, S.L., Shokurov, A.V., and Arslanov, V. V., et al., J. Phys. Chem., vol. 118, no. 8, p. 4250.

  66. Selektor, S.L., Shokurov, A.V., Raitman, O.A., et al., Colloid J., 2012, vol. 74, no. 3, p. 334.

    Article  CAS  Google Scholar 

  67. Selector, S.L., Shokurov, A.V., Arslanov, V.V. et al., Russ. J. Electrochem., 2012, vol. 48, no. 2, p. 218.

    Article  CAS  Google Scholar 

  68. Shokurov, A.V., Kutsybala, D.S., Kroitor, A.P., et al., Molecules, 2021, vol. 26, no. 14, p. 4155.

    Article  CAS  Google Scholar 

  69. Selektor, S.L., Shcherbina, M.A., and Bakirov, A.V., et al., Langmuir, 2016, vol. 32, no. 2, p. 637.

    Article  CAS  Google Scholar 

  70. Buchanan, R.M. and Pierpont, C.G., J. Am. Chem. Soc., 1980, vol. 102, no. 15, p. 4951.

    Article  CAS  Google Scholar 

  71. Pierpont, C.G., Coord. Chem. Rev., 2001, vol. 216, p. 99.

    Article  Google Scholar 

  72. Abakumov, G.A., Cherkasov, V.K., Nevodchikov, V.I., et al., Inorg. Chem., 2001, vol. 40, no. 10, p. 2434.

    Article  CAS  Google Scholar 

  73. La Pierre, H.S., Kameo, H., Halter, D.P., et al., Angew. Chem., Int. Ed., 2014, vol. 53, no. 28, p. 7154.

    Article  CAS  Google Scholar 

  74. Wei, J. and Diaconescu, P.L., Acc. Chem. Res., 2019, vol. 52, no. 2, p. 415.

    Article  CAS  Google Scholar 

  75. Rovira, C., Chem. Rev., 2004, vol. 104, no. 11, p. 5289.

    Article  CAS  Google Scholar 

  76. Kaim, W. and Schwederski, B., Pure Appl. Chem., 2004, vol. 76, no. 2, p. 351.

    Article  CAS  Google Scholar 

  77. Fedushkin, I.L., Maslova, O.V., Morozov, A.G., et al., Angew. Chem., Int. Ed., 2012, vol. 51, no. 42, p. 10584.

    Article  CAS  Google Scholar 

  78. Nitahara, S., Akiyama, T., Inoue, S., et al., J. Phys. Chem., vol. 109, no. 9, p. 3944.

  79. Zhao, W., Tong, B., Pan, Y., et al., Langmuir, 2009, vol. 25, no. 19, p. 11796.

    Article  CAS  Google Scholar 

  80. Kutsybala, D.S., Shokurov, A.V., Martynov, A.G., et al., Symmetry, 2022, vol. 14, no. 2, p. 340.

    Article  CAS  Google Scholar 

  81. Shee, N.K., Kim, M.K., and Kim, H.-J., Nanomaterials, 2020, vol. 10, no. 11, p. 2314.

    Article  CAS  Google Scholar 

  82. Yamashita, K., Furutani, K., and Ogawa, T., Asian J. Org. Chem., 2021, vol. 10, no. 5, p. 1192.

    Article  CAS  Google Scholar 

  83. Gutzeit, F., Dommaschk, M., Levin, N., et al., Inorg. Chem., 2019, vol. 58, no. 19, p. 12542.

    Article  CAS  Google Scholar 

  84. Kutsybala, D., Shokurov, A., Kroitor, A., et al., Macrogeterocycles, 2021, vol. 14, no. 1, p. 51.

    Article  CAS  Google Scholar 

  85. Selektor, S.L., Raitman, O.A., Silant’eva, D.A., et al., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 4, p. 484.

    Article  CAS  Google Scholar 

  86. Batat, P., Grauby-Heywang, C., Selektor, S., et al., ChemPhysChem, 2014, vol. 15, no. 13, p. 2823.

    Article  CAS  Google Scholar 

  87. Royal Society of Chemistry. www.rsc.org/news-events/articles/2022/mar/nanocar-race-2022/.

  88. Minkin, V.I., Molecular Switches, Weinheim: Wiley–VCH Verlag GmbH & Co. KGaA, 2011, p. 37.

  89. Ivakhnenko, D.A., Shokurov, A.V., Lyubimova, G.V., et al., Russ. Chem. Bull., 2018, vol. 67, no. 12, p. 2266.

    Article  CAS  Google Scholar 

  90. Raitman, O.A., Raitman, E.V., Zaichenko, N.L., et al., Bull. Russ. Acad. Sci. Phys., 2021, vol. 85, no. 8, p. 868.

    Article  CAS  Google Scholar 

  91. Valova, T.M., Barachevsky, V.A., Khuzin, A.A., et al., Russ. J. Gen. Chem., 2019, vol. 89, no. 9, p. 1783.

    Article  CAS  Google Scholar 

  92. Koryako, N.E., Ivakhnenko, D.A., Ivakhnenko, A.A., et al., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 6, p. 1118.

    Article  CAS  Google Scholar 

  93. Koryako, N.E., Lyubimov, A.V., Zaichenko, N.L., et al., Supramolekulyarnye Sistemy na Poverkhnosti Razdela, 2019, p. 75.

    Google Scholar 

  94. Ivakhnenko, D.A., Lyubimov, A.V., Arslanov, V.V., et al., Supramolekulyarnye Sistemy na Poverkhnosti Razdela, 2019, p. 68.

    Google Scholar 

  95. Ivakhnenko, A.A., Voloshin, N.A., Arslanov, V.V., et al., Supramolekulyarnye Sistemy na Poverkhnosti Razdela, 2019, p. 62.

    Google Scholar 

  96. Sokolov, M.E., Repina, I.N., Raitman, O.A., et al., Russ. J. Phys. Chem., 2016, vol. 90, no. 5, p. 1097.

    Article  CAS  Google Scholar 

  97. Kolokolov, F.A., Shokurov, A.V, and Raitman, O.A., Russ. Chem. Bull., 2018, vol. 67, no. 12, p. 2230.

    Article  CAS  Google Scholar 

  98. Ouyang, G. and Liu, M., Mater. Chem. Front., 2020, vol. 4, no. 1, p. 155.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Higher Education and Science of the Russian Federation (agreement on offering grant no. 075-15-2020-782) and the Russian Foundation for Basic Research (project no. 21-33-70003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Arslanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslanov, V.V., Ermakova, E.V., Kutsybala, D.S. et al. Planar Supramolecular Systems: Assembly and Functional Potential. Colloid J 84, 581–610 (2022). https://doi.org/10.1134/S1061933X22700065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X22700065

Keywords:

Navigation