Skip to main content
Log in

Molecular Dynamics Simulation of Uniformly Charged Polypeptides on the Surface of a Charged Metal Nanoparticle in an Alternating Electric Field

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation has been employed to study conformational rearrangements induced by an external field in uniformly charged polypeptides adsorbed on the surface of an oppositely charged gold nanoparticle, whose polarization direction varies with a frequency corresponding to the microwave electric field. The averaged angular and radial distributions of atom densities have been calculated for the polyelectrolytes adsorbed on the nanoparticle surface. The simulation has shown the formation of a ring-shaped fringe of polyelectrolyte units encircling the gold nanoparticle in its equatorial region. The density of the fringe of an adsorbed polyelectrolyte macromolecule on the nanoparticle surface depends on both the total charge of the nanoparticle and the fraction of charged units in the macromolecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Fuller, M.A. and Köper, I., Polymers, 2018, vol. 10, no. 1336.

  2. Fuller, M.A. and Köper, I., Nano Convergence, 2019, vol. 6, no. 11.

  3. Zhang, P., Chiu, Y., Tostanoski, L.H., and Jewell, C.M., ACS Nano, 2015, vol. 9, no. 6, p. 6465.

    Article  CAS  Google Scholar 

  4. Zhang, H., Nayak, S., Wang, W., Mallapragada, S., and Vaknin, D., Langmuir, 2017, vol. 33, no. 43, p. 12227.

    Article  CAS  Google Scholar 

  5. Panicker, S., Ahmady, I.M., Almehdi, A.M., Workie, B., Sahle-Demessie, E., Han, C., Chehimi, M.M., and Mohamed, A.A., Appl. Organomet. Chem., 2019, vol. 7, p. 5016.

    Google Scholar 

  6. Qiu, T.A., Torelli, M.D., Vartanian, A.M., Rackstraw, N.B., Buchman, J.T., Jacob, L.M., Murphy, C.J., Hamers, R.J., and Haynes, C.L., Anal. Chem., 2017, vol. 89, p. 1823.

    Article  CAS  Google Scholar 

  7. Marsich, L., Bonifacio, A., Mandal, S., Krol, S., Beleites, C., and Sergo, V., Langmuir, 2012, vol. 28, no. 37, p. 13166.

    Article  CAS  Google Scholar 

  8. Cantini, E., Wang, X., Koelsch, P., Preece, J.A., Ma, J., and Mendes, P.M., Acc. Chem. Res., 2016, vol. 49, no. 6, p. 1223.

    Article  CAS  Google Scholar 

  9. Chen, Y., Cruz-Chu, E.R., Woodard, J., Gartia, M.R., Schulten, K., and Liu, L., ACS Nano, 2012, vol. 6, p. 8847.

    Article  CAS  Google Scholar 

  10. Kruchinin, N.Yu. and Kucherenko, M.G., Colloid J., 2019, vol. 81, p. 110.

    Article  CAS  Google Scholar 

  11. Kruchinin, N.Yu. and Kucherenko, M.G., Russ. J. Phys. Chem. A, 2020, vol. 94, p. 1433.

    Article  CAS  Google Scholar 

  12. Kruchinin, N.Yu. and Kucherenko, M.G., Biophysics, 2020, vol. 65, p. 186.

    Article  CAS  Google Scholar 

  13. Kruchinin, N.Yu. and Kucherenko, M.G., Colloid J., 2020, vol. 82, p. 136.

    Article  CAS  Google Scholar 

  14. Kruchinin, N.Yu. and Kucherenko, M.G., Colloid J., 2020, vol. 82, p. 392.

    Article  CAS  Google Scholar 

  15. Kruchinin, N.Yu. and Kucherenko, M.G., Colloid J., 2021, vol. 83, p. 79.

    Article  CAS  Google Scholar 

  16. Kucherenko, M.G., Rusinov, A.P., Chmereva, T.M., Ignat’ev, A.A., Kislov, D.A., and Kruchinin, N.Yu., Opt. Spectrosc., 2009, vol. 107, p. 480.

    Article  CAS  Google Scholar 

  17. Kucherenko, M.G., Izmodenova, S.V., Kruchinin, N.Yu., and Chmereva, T.M., High Energy Chem., 2009, vol. 43, p. 592.

    Article  CAS  Google Scholar 

  18. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., and Schulten, K., J. Comput. Chem., 2005, vol. 26, p. 1781.

    Article  CAS  Google Scholar 

  19. MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera K., et al., J. Phys. Chem. B. B, 1998, vol. 102, p. 3586.

    Article  Google Scholar 

  20. Heinz, H., Vaia, R.A., Farmer, B.L., and Naik, R.R., J. Phys. Chem. C, 2008, vol. 112, p. 17281.

    Article  CAS  Google Scholar 

  21. Darden, T., York, D., and Pedersen, L., J. Chem. Phys., 1993, vol. 98, p. 10089.

    Article  CAS  Google Scholar 

  22. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L., J. Chem. Phys., 1983, vol. 79, p. 926.

    Article  CAS  Google Scholar 

  23. Shankla, M. and Aksimentiev, A., Nat. Commun., 2014, vol. 5, p. 5171.

    Article  CAS  Google Scholar 

  24. Humphrey, W., Dalke, A., and Schulten, K., J. Mol. Graphics, 1996, vol. 14, p. 33.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of scientific project no. FSGU-2020-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Kruchinin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruchinin, N.Y. Molecular Dynamics Simulation of Uniformly Charged Polypeptides on the Surface of a Charged Metal Nanoparticle in an Alternating Electric Field. Colloid J 83, 326–334 (2021). https://doi.org/10.1134/S1061933X2102006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X2102006X

Navigation