Percolation Threshold in Polymer Nanocomposites

Abstract

Two approaches to the calculation of the percolation threshold in polymer nanocomposites have been analyzed, namely, the excluded-volume theory and the model proposed by Li and Kim. It has been shown that the former approach yields a rough estimate of the threshold, while the latter one leads to simple relations that can be used, however, with essential corrections. It is necessary, first, to take into account the result of solving the problem of lattice sites, and, second, to average more exactly the orientation of anisodiametric nanoparticles. The role of interfacial layers has been analyzed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    In fact, the dependence is more complex, and it is S-shaped in many cases [17].

  2. 2.

    According to the percolation theory, when solving the problem of lattice sites, the fraction of conductive knots is determined.

REFERENCES

  1. 1

    Balberg, I., Anderson, C.H., Alexander, S., and Wagner, N., Phys. Rev. B, 1984, vol. 30, p. 3933.

    Article  Google Scholar 

  2. 2

    Balberg, I., Philos. Mag. B, vol. 56, p. 991.

  3. 3

    Celzard, A., McRae, E., Deleuze, C., Dufort, M., Furdin, G., and Marêché, J.F., Phys. Rev. B, vol. 53, p. 6209.

  4. 4

    Pukánszky, B., Composites, 1990, vol. 21, p. 255.

    Article  Google Scholar 

  5. 5

    Youngs, I.J., J. Phys. D: Appl. Phys., 2003, vol. 36, p. 738.

    CAS  Article  Google Scholar 

  6. 6

    Du, F., Scogna, R.C., Zhou, W., Brand, S., Fischer, J.E., and Winey, K., Macromolecules, 2004, vol. 37, p. 9048.

    CAS  Article  Google Scholar 

  7. 7

    Hobbie, E.K. and Fry, D.J., J. Chem. Phys., 2007, vol. 126, p. 124907.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Kozlov, G.V. and Dolbin, I.V., J. Appl. Mech. Tech. Phys., 2018, vol. 59, p. 765.

    CAS  Article  Google Scholar 

  9. 9

    Kozlov, G.V. and Dolbin, I.V., Izv. Vyssh. Uchebn. Zaved., Fiz., 2018, vol. 61, no. 5, p. 151.

    Google Scholar 

  10. 10

    Martin-Gallego, M., Bernal, M.M., Hernandez, M., Verdejo, R., and Lopez-Manchado, M.A., Eur. Polym. J., 2013, vol. 49, p. 1347.

    CAS  Article  Google Scholar 

  11. 11

    Shi, B., Dong, L., Li, M., Liu, B., Kim, K., Xu, X., Zhou, J., and Liu, J., Appl. Phys. Lett., 2018, vol. 113, 041902.

    Article  CAS  Google Scholar 

  12. 12

    Marsden, A.J., Papageorgiou, D.G., Vallés, C., Liscio, LA., Palermo, V., Bissett, M.A., Young, R.J., and Kinloch, I.A., 2D Mater., 2018, vol. 5, 032003.

  13. 13

    Wang, S., Liang, R., Wang, B., and Zhang, C., Carbon, 2009, vol. 47, p. 53.

    CAS  Article  Google Scholar 

  14. 14

    Stauffer, D. and Aharony, A., Introduction to Percolation Theory, London: Taylor and Francis, 1994.

    Google Scholar 

  15. 15

    Efros, A.L., Fizika i geometriya besporyadka (Physics and Geometry of Disorder), Moscow: Nauka, 1982.

  16. 16

    Spanos, P., Elsbernd, P., Ward, B., and Koenck, T., Philos. Trans. R. Soc. A, 2013, vol. 371, 20120494.

    CAS  Article  Google Scholar 

  17. 17

    Rahaman, M., Aldalbahi, A., Govindasami, P., Khanam, N.P., Bhandari, S., Feng, P., and Altalhi, T., Polymers, 2017, vol. 9, p. 527.

    PubMed Central  Article  CAS  Google Scholar 

  18. 18

    Ni, X., Hui, C., Su, N., Jiang, W., and Liu, F., Nanotechnology, 2018, vol. 29, 075401.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  19. 19

    Ni, X., Hui, C., Su, N., Cutler, R., and Liu, F., Nanotechnology, 2019, vol. 30, 185302.

    PubMed  Article  CAS  Google Scholar 

  20. 20

    Yan, K.Y., Xue, Q.Z., Zheng, Q.B., and Hao, L.Z., Nanotechnology, 2007, vol. 18, 255705.

    Article  CAS  Google Scholar 

  21. 21

    Wang, Y., Yang, C., Pei, Q.-X., and Zhang, Y., ACS Appl. Mater. Interfaces, 2016, vol. 8, 8272.

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Deng, H., Wu, F., Chen, L., Xu, Z.W., Liu, L.S., Yang, C.Y., Mai, W., and Cheng, B.W., J. Appl. Polym. Sci., 2014, vol. 131, 41164.

    Article  CAS  Google Scholar 

  23. 23

    Baxter, S.C. and Robinson, C.T., Compos. Sci. Technol., 2011, vol. 71, p. 1273.

    CAS  Article  Google Scholar 

  24. 24

    Onsager, L., Ann. N. Y. Acad. Sci., 1949, vol. 51, p. 627.

    CAS  Article  Google Scholar 

  25. 25

    Ambrosetti, G., Grimaldi, C., Balberg, I., Maeder, T., Danani, A., and Ryser, P., Phys. Rev. B, 2010, vol. 81, 155434.

    Article  CAS  Google Scholar 

  26. 26

    Chen, Y., Pan, F., Guo, Z., Liu, B., and Zhang, J., J. Mech. Phys. Solids, 2015, vol. 84, p. 395.

    CAS  Article  Google Scholar 

  27. 27

    Plummer, C.J.G., Rodlert, M., Bucaille, J.-L., Grünbauer, H.J.M., and Månson, J.-A.E., Polymer, 2005, vol. 46, p. 6543.

    CAS  Article  Google Scholar 

  28. 28

    Nadiv, R., Fernandes, R.M.F., Ochbaum, G., Dai, J., Buzaglo, M., Varenik, M., and Regev, O., Polymer, 2018, vol. 153, p. 52.

    CAS  Article  Google Scholar 

  29. 29

    Kale, S., Karimi, P., Sabet, F.A., Jasiuk, I., and Ostoja-Starzewski, M., J. Appl. Phys., 2018, vol. 123, 085104.

    Article  CAS  Google Scholar 

  30. 30

    Gharehnazifam, Z., Baniassadi, M., Abrinia, K., Karimpour, M., and Baghani, M., Int. J. Appl. Mech., 2016, vol. 8, 1650055.

    Article  Google Scholar 

  31. 31

    Soto, M., Esteva, M., Martínez-Romero, O., Baez, J., and Elías-Zúñiga, A., Materials, 2015, vol. 8, p. 6697.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Chen, Y., Pan, F., Wang, S., Liu, B., and Zhang, J., Compos. Struct., 2015, vol. 124, p. 292.

    Article  Google Scholar 

  33. 33

    Mutlay, İ. and Tudoran, L.B., Fuller. Nanotub. Carbon Nanostr., 2014, vol. 22, p. 413.

    CAS  Article  Google Scholar 

  34. 34

    Lu, W., Chou, T.-W., and Thostenson, E.T., Appl. Phys. Lett., 2010, vol. 96, 223106.

    Article  CAS  Google Scholar 

  35. 35

    Seidel, G.D. and Lagoudas, D.C., J. Compos. Mater., 2009, vol. 43, p. 917.

    CAS  Article  Google Scholar 

  36. 36

    Balberg, I., J. Phys. D: Appl. Phys., 2009, vol. 42, p. 064003.

    Article  CAS  Google Scholar 

  37. 37

    White, S.I., DiDonna, B.A., Mu, M., Lubensky, T.C., and Winey, K.I., Phys. Rev. B, 2009, vol. 79, 024301.

    Article  CAS  Google Scholar 

  38. 38

    Li, J. and Kim, J.-K., Compos. Sci. Technol., 2007, vol. 67, p. 2114.

    CAS  Article  Google Scholar 

  39. 39

    Zhang, B., Yu, Y., Liu, Y., Huang, Z-D., He, Y., and Kim, J-K., Nanoscale, 2013, vol. 5, p. 2100.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Li, J., Ma, P.C., Sze, C.W., Kai, T.C., Tang, B.Z., and Kim, J.K., Proc. 16th Int. Conf. on Composite Materials. CM-16, Kyoto, 2007. http://hdl.handle.net/1783.1/50129.

  41. 41

    Li, J., Ma, P.C., Chow, W.S., To, C.K., Tang, B.Z., and Kim, J.-K., Adv. Funct. Mater., 2007, vol. 17, p. 3207.

    CAS  Article  Google Scholar 

  42. 42

    Shi, D.-L., Feng, X.-Q., Huang, Y.Y., Hwang, K.-C., and Gao, H., J. Eng. Mater. Technol., 2004, vol. 126, p. 250.

    CAS  Article  Google Scholar 

  43. 43

    Kim, Y.J., Shin, T.S., Choi, H.D., Kwon, J.H., Chung, Y.C., and Yoon, H.G., Carbon, 2005, vol. 43, p. 23.

    Article  CAS  Google Scholar 

  44. 44

    Allaoui, A., Bai, S., Cheng, H.M., and Bai, J.B., Compos. Sci. Technol., 2002, vol. 62, p. 1993.

    CAS  Article  Google Scholar 

  45. 45

    Bai, J.B. and Allaoui, A., Composites, Part A, 2003, vol. 34, p. 689.

    Article  CAS  Google Scholar 

  46. 46

    Combessis, A., Bayon, L., and Flandin, L., Appl. Phys. Lett., 2013, vol. 102, 011907.

    Article  CAS  Google Scholar 

  47. 47

    bauhofer, w. and kovacs, j.z., compos. sci. technol., 2009, vol. 69, p. 1486.

    CAS  Article  Google Scholar 

  48. 48

    spitalsky, z., tasis, d., papagelis, k., and galiotis, c., prog. polym. sci., 2010, vol. 35, p. 357.

    CAS  Article  Google Scholar 

  49. 49

    Irzhak, V.I., Russ. J. Phys. Chem. A, 2020, vol. 94, p. 1643.

    CAS  Article  Google Scholar 

  50. 50

    Du, F., Fischer, J.E., and Winey, K.I., Phys. Rev. B, 2005, vol. 72, 121404.

    Article  CAS  Google Scholar 

  51. 51

    Behnam, A., Guo, J., and Ural, A., J. Appl. Phys., 2007, vol. 102, 044313.

    Article  CAS  Google Scholar 

  52. 52

    Kovacs, J.Z., Velagala, B.S., Schulte, K., and Bauhofer, W., Compos. Sci. Technol., 2007, vol. 67, p. 922.

    CAS  Article  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state order to Institute of Problems of Chemical Physics, Russian Academy of Sciences (registration number AAAA-А19-119032690060-9).

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. I. Irzhak.

Additional information

Translated by E. Khozina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Irzhak, V.I. Percolation Threshold in Polymer Nanocomposites. Colloid J 83, 64–69 (2021). https://doi.org/10.1134/S1061933X21010063

Download citation