Abstract
Two approaches to the calculation of the percolation threshold in polymer nanocomposites have been analyzed, namely, the excluded-volume theory and the model proposed by Li and Kim. It has been shown that the former approach yields a rough estimate of the threshold, while the latter one leads to simple relations that can be used, however, with essential corrections. It is necessary, first, to take into account the result of solving the problem of lattice sites, and, second, to average more exactly the orientation of anisodiametric nanoparticles. The role of interfacial layers has been analyzed.
This is a preview of subscription content, access via your institution.



Notes
- 1.
In fact, the dependence is more complex, and it is S-shaped in many cases [17].
- 2.
According to the percolation theory, when solving the problem of lattice sites, the fraction of conductive knots is determined.
REFERENCES
- 1
Balberg, I., Anderson, C.H., Alexander, S., and Wagner, N., Phys. Rev. B, 1984, vol. 30, p. 3933.
- 2
Balberg, I., Philos. Mag. B, vol. 56, p. 991.
- 3
Celzard, A., McRae, E., Deleuze, C., Dufort, M., Furdin, G., and Marêché, J.F., Phys. Rev. B, vol. 53, p. 6209.
- 4
Pukánszky, B., Composites, 1990, vol. 21, p. 255.
- 5
Youngs, I.J., J. Phys. D: Appl. Phys., 2003, vol. 36, p. 738.
- 6
Du, F., Scogna, R.C., Zhou, W., Brand, S., Fischer, J.E., and Winey, K., Macromolecules, 2004, vol. 37, p. 9048.
- 7
Hobbie, E.K. and Fry, D.J., J. Chem. Phys., 2007, vol. 126, p. 124907.
- 8
Kozlov, G.V. and Dolbin, I.V., J. Appl. Mech. Tech. Phys., 2018, vol. 59, p. 765.
- 9
Kozlov, G.V. and Dolbin, I.V., Izv. Vyssh. Uchebn. Zaved., Fiz., 2018, vol. 61, no. 5, p. 151.
- 10
Martin-Gallego, M., Bernal, M.M., Hernandez, M., Verdejo, R., and Lopez-Manchado, M.A., Eur. Polym. J., 2013, vol. 49, p. 1347.
- 11
Shi, B., Dong, L., Li, M., Liu, B., Kim, K., Xu, X., Zhou, J., and Liu, J., Appl. Phys. Lett., 2018, vol. 113, 041902.
- 12
Marsden, A.J., Papageorgiou, D.G., Vallés, C., Liscio, LA., Palermo, V., Bissett, M.A., Young, R.J., and Kinloch, I.A., 2D Mater., 2018, vol. 5, 032003.
- 13
Wang, S., Liang, R., Wang, B., and Zhang, C., Carbon, 2009, vol. 47, p. 53.
- 14
Stauffer, D. and Aharony, A., Introduction to Percolation Theory, London: Taylor and Francis, 1994.
- 15
Efros, A.L., Fizika i geometriya besporyadka (Physics and Geometry of Disorder), Moscow: Nauka, 1982.
- 16
Spanos, P., Elsbernd, P., Ward, B., and Koenck, T., Philos. Trans. R. Soc. A, 2013, vol. 371, 20120494.
- 17
Rahaman, M., Aldalbahi, A., Govindasami, P., Khanam, N.P., Bhandari, S., Feng, P., and Altalhi, T., Polymers, 2017, vol. 9, p. 527.
- 18
Ni, X., Hui, C., Su, N., Jiang, W., and Liu, F., Nanotechnology, 2018, vol. 29, 075401.
- 19
Ni, X., Hui, C., Su, N., Cutler, R., and Liu, F., Nanotechnology, 2019, vol. 30, 185302.
- 20
Yan, K.Y., Xue, Q.Z., Zheng, Q.B., and Hao, L.Z., Nanotechnology, 2007, vol. 18, 255705.
- 21
Wang, Y., Yang, C., Pei, Q.-X., and Zhang, Y., ACS Appl. Mater. Interfaces, 2016, vol. 8, 8272.
- 22
Deng, H., Wu, F., Chen, L., Xu, Z.W., Liu, L.S., Yang, C.Y., Mai, W., and Cheng, B.W., J. Appl. Polym. Sci., 2014, vol. 131, 41164.
- 23
Baxter, S.C. and Robinson, C.T., Compos. Sci. Technol., 2011, vol. 71, p. 1273.
- 24
Onsager, L., Ann. N. Y. Acad. Sci., 1949, vol. 51, p. 627.
- 25
Ambrosetti, G., Grimaldi, C., Balberg, I., Maeder, T., Danani, A., and Ryser, P., Phys. Rev. B, 2010, vol. 81, 155434.
- 26
Chen, Y., Pan, F., Guo, Z., Liu, B., and Zhang, J., J. Mech. Phys. Solids, 2015, vol. 84, p. 395.
- 27
Plummer, C.J.G., Rodlert, M., Bucaille, J.-L., Grünbauer, H.J.M., and Månson, J.-A.E., Polymer, 2005, vol. 46, p. 6543.
- 28
Nadiv, R., Fernandes, R.M.F., Ochbaum, G., Dai, J., Buzaglo, M., Varenik, M., and Regev, O., Polymer, 2018, vol. 153, p. 52.
- 29
Kale, S., Karimi, P., Sabet, F.A., Jasiuk, I., and Ostoja-Starzewski, M., J. Appl. Phys., 2018, vol. 123, 085104.
- 30
Gharehnazifam, Z., Baniassadi, M., Abrinia, K., Karimpour, M., and Baghani, M., Int. J. Appl. Mech., 2016, vol. 8, 1650055.
- 31
Soto, M., Esteva, M., Martínez-Romero, O., Baez, J., and Elías-Zúñiga, A., Materials, 2015, vol. 8, p. 6697.
- 32
Chen, Y., Pan, F., Wang, S., Liu, B., and Zhang, J., Compos. Struct., 2015, vol. 124, p. 292.
- 33
Mutlay, İ. and Tudoran, L.B., Fuller. Nanotub. Carbon Nanostr., 2014, vol. 22, p. 413.
- 34
Lu, W., Chou, T.-W., and Thostenson, E.T., Appl. Phys. Lett., 2010, vol. 96, 223106.
- 35
Seidel, G.D. and Lagoudas, D.C., J. Compos. Mater., 2009, vol. 43, p. 917.
- 36
Balberg, I., J. Phys. D: Appl. Phys., 2009, vol. 42, p. 064003.
- 37
White, S.I., DiDonna, B.A., Mu, M., Lubensky, T.C., and Winey, K.I., Phys. Rev. B, 2009, vol. 79, 024301.
- 38
Li, J. and Kim, J.-K., Compos. Sci. Technol., 2007, vol. 67, p. 2114.
- 39
Zhang, B., Yu, Y., Liu, Y., Huang, Z-D., He, Y., and Kim, J-K., Nanoscale, 2013, vol. 5, p. 2100.
- 40
Li, J., Ma, P.C., Sze, C.W., Kai, T.C., Tang, B.Z., and Kim, J.K., Proc. 16th Int. Conf. on Composite Materials. CM-16, Kyoto, 2007. http://hdl.handle.net/1783.1/50129.
- 41
Li, J., Ma, P.C., Chow, W.S., To, C.K., Tang, B.Z., and Kim, J.-K., Adv. Funct. Mater., 2007, vol. 17, p. 3207.
- 42
Shi, D.-L., Feng, X.-Q., Huang, Y.Y., Hwang, K.-C., and Gao, H., J. Eng. Mater. Technol., 2004, vol. 126, p. 250.
- 43
Kim, Y.J., Shin, T.S., Choi, H.D., Kwon, J.H., Chung, Y.C., and Yoon, H.G., Carbon, 2005, vol. 43, p. 23.
- 44
Allaoui, A., Bai, S., Cheng, H.M., and Bai, J.B., Compos. Sci. Technol., 2002, vol. 62, p. 1993.
- 45
Bai, J.B. and Allaoui, A., Composites, Part A, 2003, vol. 34, p. 689.
- 46
Combessis, A., Bayon, L., and Flandin, L., Appl. Phys. Lett., 2013, vol. 102, 011907.
- 47
bauhofer, w. and kovacs, j.z., compos. sci. technol., 2009, vol. 69, p. 1486.
- 48
spitalsky, z., tasis, d., papagelis, k., and galiotis, c., prog. polym. sci., 2010, vol. 35, p. 357.
- 49
Irzhak, V.I., Russ. J. Phys. Chem. A, 2020, vol. 94, p. 1643.
- 50
Du, F., Fischer, J.E., and Winey, K.I., Phys. Rev. B, 2005, vol. 72, 121404.
- 51
Behnam, A., Guo, J., and Ural, A., J. Appl. Phys., 2007, vol. 102, 044313.
- 52
Kovacs, J.Z., Velagala, B.S., Schulte, K., and Bauhofer, W., Compos. Sci. Technol., 2007, vol. 67, p. 922.
Funding
The work was carried out within the framework of the state order to Institute of Problems of Chemical Physics, Russian Academy of Sciences (registration number AAAA-А19-119032690060-9).
Author information
Affiliations
Corresponding author
Additional information
Translated by E. Khozina
Rights and permissions
About this article
Cite this article
Irzhak, V.I. Percolation Threshold in Polymer Nanocomposites. Colloid J 83, 64–69 (2021). https://doi.org/10.1134/S1061933X21010063
Received:
Revised:
Accepted:
Published:
Issue Date: