Multicompartment Self-assemblies of Triblock Copolymer for Drug Delivery

Abstract

Novel multicompartment self-assemblies of triblock copolymer polystyrene–polyisoprene–poly(2-vinylpyridine) (PS-PI-P2VP) for drug delivery are demonstrated. The triblock copolymer assemblies in dilute solutions in a common solvent (tetrahydrofuran) undergo transformations from core-shell-corona micelles to multicompartment micelles by adding P2VP-selective solvent (water). The effects of water content and pH on the assembled structures were systematically investigated. Multicompartment micelles are also obtained by adding a surfactant, 4-biphenylcarboxylic acid, into the solution. Such multicompartment self-assemblies are used as carriers for encapsulation and release of an anticancer drug doxorubicin hydrochloride (DOX). The drug loading content and drug loading efficiency of DOX were evaluated. The DOX release experiments were performed at 37°C under pH 5.5 and pH 7.4. The DOX release rate was improved as pH decreased from pH 7.4 to 5.0, with 45.6% release of DOX in 32 h.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Cabral, H., Miyata, K., Osada, K., and Kataoka, K., Chem. Rev., 2018, vol. 118, p. 6844.

    CAS  Article  Google Scholar 

  2. 2

    Allen, S.D., Bobbala, S., Karabin, N.B., and Scott, E.A., Nanoscale Horiz., 2019, vol. 4, p. 258.

    CAS  Article  Google Scholar 

  3. 3

    Yoon, H.J., and Jang, W.D., J. Mater. Chem., 2010, vol. 20, p. 211.

    CAS  Article  Google Scholar 

  4. 4

    Wang, Z., Deng, X., Ding, J., Zhou, W., Zheng, X., and Tang, G., Int. J. Pharm., 2018, vol. 535, p. 253.

    CAS  Article  Google Scholar 

  5. 5

    Bates, C.M. and Bates, F.S., Macromolecules, 2017, vol. 50, p. 3.

    CAS  Article  Google Scholar 

  6. 6

    Mai, Y. and Eisenberg, A., Chem. Soc. Rev., 2012, vol. 41, p. 5969.

    CAS  Article  Google Scholar 

  7. 7

    Hadjichristidis, N., Iatrou, H., Pitsikalis, M., Pispas, S., and Avgeropoulos, A., Prog. Polym. Sci., 2005, vol. 30, p. 725.

    CAS  Article  Google Scholar 

  8. 8

    Fustin, C.A., Abetz, V., and Gohy, J.F., Eur. Phys. J. E, 2005, vol. 16, p. 291.

    CAS  Article  Google Scholar 

  9. 9

    Cui, H., Chen, Z., Zhong, S., Wooley, K.L., and Pochan, D.J., Science, 2007, vol. 317, p. 647.

    CAS  Article  Google Scholar 

  10. 10

    Konishcheva, E., Daubian, D., Gaitzsch, J., and Meier, W., Helv. Chim. Acta, 2018, vol. 101, p. e1700287.

    Article  Google Scholar 

  11. 11

    Oliver, A.M., Spontak, R.J., and Manners, I., Polym. Chem., 2019, vol. 10, p. 2559.

    CAS  Article  Google Scholar 

  12. 12

    Dag, A., Zhao, J., and Stenzel, M.H., ACS Macro Lett., 2015, vol. 4, p. 579.

    CAS  Article  Google Scholar 

  13. 13

    Konishcheva, E.V., Zhumaev, U.E., Kratt, M., Oehri, V., and Meier, W., Macromolecules, 2017, vol. 50, p. 7155.

    CAS  Article  Google Scholar 

  14. 14

    Gaitzsch, J., Messager, L., Morecroft, E., and Meier, W., Polymers, 2017, vol. 9, p. 483.

    Article  Google Scholar 

  15. 15

    Zhu, H., Cui, Y., Wang, J., and Qiu, H., RSC Adv., 2019, vol. 9, p. 9443.

    CAS  Article  Google Scholar 

  16. 16

    Gao, Y., Wang, Y., Jiang, M., and Chen, D., ACS Macro Lett., 2012, vol. 1, p. 1312.

    CAS  Article  Google Scholar 

  17. 17

    Gröschel, A.H., Schacher, F.H., Schmalz, H., Borisov, O.V., Zhulina, E.B., Walther, A., and Müller, A.H.E., Nat. Commun., 2012, vol. 3, p. 710.

    Article  Google Scholar 

  18. 18

    Gröschel, A.H., Walther, A., Löbling, T.I., Schacher, F.H., Schmalz, H., and Müller, A.H.E., Nature, 2013, vol. 503, p. 247.

    Article  Google Scholar 

  19. 19

    Löbling, T.I., Borisov, O., Haataja, J.S., Ikkala, O., Gröschel, A.H., and Müller, A.H.E., Nat. Commun., 2016, vol. 7, p. 12097.

    Article  Google Scholar 

  20. 20

    Liu, H., and Feng, Y., Macromol. Chem. Phys., 2018, vol. 219, p. 1700558.

    Article  Google Scholar 

  21. 21

    Atanase, L.I., and Riess, G., Polymers, 2018, vol. 10, p. 62.

    Article  Google Scholar 

  22. 22

    Gröschel, A.H., and Müller, A.H.E., Nanoscale, 2015, vol. 7, p. 11841.

    Article  Google Scholar 

  23. 23

    Löbling, T.I., Ikkala, O., Gröschel, A.H., and Müller, A.H.E., ACS Macro Lett., 2016, vol. 5, p. 1044.

    Article  Google Scholar 

  24. 24

    Loh, X.J., Barrio, J., Toh, P.P.C., Lee, T.C., Jiao, D., Rauwald, U., Appel, E.A., and Scherman, O.A., Biomacromolecules, 2012, vol. 13, p. 84.

    CAS  Article  Google Scholar 

  25. 25

    Du, J., Fan, L., and Liu, Q., Macromolecules, 2012, vol. 45, p. 8275.

    CAS  Article  Google Scholar 

  26. 26

    Wang, Z., Luo, T., Sheng, R., Li, H., Sun, J., and Cao, A., Biomacromolecules, 2016, vol. 17, p. 98.

    CAS  Article  Google Scholar 

  27. 27

    Cui, X., Wang, N., Wang, H., Li, G., and Tao, Q., Int. J. Polym. Mater. Polym. Biomater., 2019, vol. 68, p. 733.

    CAS  Article  Google Scholar 

  28. 28

    Yang, C., Xue, Z., Liu, Y., Xiao, J., Chen, J., Zhang, L., Guo, J., and Lin, W., Mat. Sci. Eng. C-Mater., 2018, vol. 84, p. 254.

    CAS  Google Scholar 

  29. 29

    Sun, L. and Du, J., Polymer, 2012, vol. 53, p. 2068.

    CAS  Article  Google Scholar 

  30. 30

    Lodge, T.P., Pudil, B., and Hanley, K.J., Macromolecules, 2002, vol. 35, p. 4707.

    CAS  Article  Google Scholar 

  31. 31

    Lodge, T.P., Hanley, K.J., Pudil, B., and Alahapperuma, V., Macromolecules, 2003, vol. 36, p. 816.

    CAS  Article  Google Scholar 

  32. 32

    Zhu, J., Liao Y., and Jiang, W., Langmuir, 2004, vol. 20, p. 3809.

    CAS  Article  Google Scholar 

  33. 33

    Shen, H., Zhang, L., and Eisenberg, A., J. Am. Chem. Soc., 1999, vol. 121, p. 2728.

    CAS  Article  Google Scholar 

  34. 34

    Zhu, J. and Jiang, W., Macromolecules, 2005, vol. 38, p. 9315.

    CAS  Article  Google Scholar 

  35. 35

    Jiang, T., Wang, L., Lin, S., Lin, J., and Li, Y., Langmuir, 2011, vol. 27, p. 6440.

    CAS  Article  Google Scholar 

  36. 36

    Ma, Z., Yu, H., and Jiang, W., J. Phys. Chem. B, 2009, vol. 113, p. 3333.

    CAS  Article  Google Scholar 

  37. 37

    Kubowicz, S., Baussard, J.F., Lutz, J.F., Thünemann, A.F., Berlepsch, H., and Laschewsky, A., Angew. Chem. Int. Ed., 2005, vol. 44, p. 5262.

    CAS  Article  Google Scholar 

  38. 38

    Zhang, W., Shi, L., An, Y., Wu, K., Gao, L., Liu, Z., Ma, R., Meng, Q., Zhao, C., and He, B., Macromolecules, 2004, vol. 37, p. 2924.

    CAS  Article  Google Scholar 

  39. 39

    Fu, J., Kim, D.H., and Knoll, W., ChemPhysChem, 2009, vol. 10, p. 1190.

    CAS  Article  Google Scholar 

  40. 40

    Ahmed, F., Pakunlu, R.I., Brannan, A., Bates, F., Minko, T., and Discher, D.E., J. Control. Release, 2006, vol. 116, p. 150.

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was funded by the Ningbo Natural Science Foundation (2017A610232); the S&T Innovation 2025 Major Programme of Ningbo (2018B10040); and the Zhejiang Natural Science Foundation of China (Y20B060020).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yang Cong.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang Cong, Zhou, Q., Rao, Z. et al. Multicompartment Self-assemblies of Triblock Copolymer for Drug Delivery. Colloid J 83, 70–78 (2021). https://doi.org/10.1134/S1061933X2101004X

Download citation