Influence of a Surfactant on Evaporation Intensity of Suspended Water Droplets

Abstract

Experimental data have been presented on the evaporation rate of suspended droplets of both pure water and water containing ≈1.5 wt % surfactant, sodium dodecyl sulfate. Evaporation occurs in a convective flow of dry air, with its velocity and temperature being varied within ranges of U0 = 1–5 m/s and T0 = 20–80°C, respectively. The density of the mass flux from the surface of the surfactant-containing droplets is 2–3 times lower than that in the case of pure water. For droplets in a dry air flow, the change in their diameter can be described by a set of similarity criteria, and a generalized linear empirical dependence of the evaporation rate on thermodynamic parameters may be constructed for these droplets.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    Shah, B.H. and Darby, R., Int. J. Heat Mass Transfer, 1973, vol. 16, p. 1889.

    CAS  Article  Google Scholar 

  2. 2

    He, F., Li, J., Wang, J., Wang, Z., and Wang, L., Int. J. Heat Mass Transfer, 2015, vol. 88, p. 406.

    CAS  Article  Google Scholar 

  3. 3

    Yang, Y.M. and Maa, J.R., Chem. Eng. Res. Des., 2001, vol. 79, p. 409.

    CAS  Article  Google Scholar 

  4. 4

    Cho, H.J., Mizerak, J.P., and Wang, E.N., Nat. Commun., 2015, vol. 6, p. 8599.

    CAS  Article  Google Scholar 

  5. 5

    Elghanam, R.I., El Fawal, M.M., Aziz, R.A., Skr, M.H., and Khalifa, A.H., Ain Shams Eng. J., 2011, vol. 2, p. 195.

    Google Scholar 

  6. 6

    Qiao, Y.M. and Chandra, S., Proc. R. Soc. London A, 1997, vol. 453, p. 673.

    CAS  Article  Google Scholar 

  7. 7

    Zhang, W.-W., Li, Y.-Y., Long, W.-J., and Cheng, W.-L., Int. J. Heat Mass Transfer, 2018, vol. 126, p. 363.

    CAS  Article  Google Scholar 

  8. 8

    Liu, N., Yu, Z., Liang, Y., and Zhang, H., Int. J. Heat Mass Transfer, 2019, vol. 144, p. 118 593.

    Article  Google Scholar 

  9. 9

    Gokhale, S.J., Plawsky, J.L., and Wayner, P.C., Langmuir, 2005, vol. 21, p. 8188.

    CAS  Article  Google Scholar 

  10. 10

    Semenov, S., Trybala, A., Agogo, H., Kovalchuk, N., Ortega, F., Rubio, R.G., Starov, V.M., and Velarde, M.G., Langmuir, 2013, vol. 29, p. 10028.

    CAS  Article  Google Scholar 

  11. 11

    Chen, R.-H., Phuoc, T.X., and Martello, D., Int. J. Heat Mass Transfer, 2010, vol. 53, p. 3677.

    CAS  Article  Google Scholar 

  12. 12

    Lunkenheimer, K., Lind, A., and Jost, M., J. Phys. Chem. B, 2003, vol. 107, p. 7527.

    CAS  Article  Google Scholar 

  13. 13

    Aytouna, M., Bartolo, D., Wegdam, G., Bonn, D., and Rafaï, S., Exp. Fluids, 2010, vol. 48, p. 49.

    CAS  Article  Google Scholar 

  14. 14

    Stone, H.A. and Lealz, L.G., J. Fluid Mech., 1990, vol. 220, p. 161.

    CAS  Article  Google Scholar 

  15. 15

    Saylor, J.R. and Grizzard, N.K., Exp. Fluids, 2004, vol. 36, p. 783.

    CAS  Article  Google Scholar 

  16. 16

    Nakoryakov, V.E., Bufetov, N.S., and Dekhtyar’, R.A., Prikl. Mekh. Tekh. Fiz., 2004, vol. 45, p. 156.

    Google Scholar 

  17. 17

    Daiguji, H., Hihara, E., and Saito, T., Int. J. Heat Mass Transfer, 1997, vol. 40, p. 1743.

    CAS  Article  Google Scholar 

  18. 18

    McKenna, S.P. and McGillis, W.R., Int. J. Heat Mass Transfer, 2004, vol. 47, p. 539.

    CAS  Article  Google Scholar 

  19. 19

    Svitova, T., Hill, R.M., and Radke, C.J., Colloids Surf. A, 2001, vols. 183–185, p. 607.

  20. 20

    Doganci, M.D., Sesli, B., Uyar, H., and Erbil, Y., J. Colloid Interface Sci., 2011, vol. 362, p. 524.

    CAS  Article  Google Scholar 

  21. 21

    Langmuir, I. and Schaefer, V.J., J. Franklin Inst., 1943, vol. 235, p. 119.

    CAS  Article  Google Scholar 

  22. 22

    Bradley, R.S., J. Colloid Sci., 1955, vol. 10, no. 6, p. 571.

    CAS  Article  Google Scholar 

  23. 23

    Derjaguin, B.V., Bakanov, S.P., and Kurgin, Yu.S., Dokl. Akad. Nauk SSSR, 1960, vol. 135, p. 1417.

    Google Scholar 

  24. 24

    Derjaguin, B.V. and Kurgin, Yu.S., Dokl. Akad. Nauk SSSR, 1964, vol. 155, p. 644.

    Google Scholar 

  25. 25

    Sadd, P.A., Lamb, J.A., and Clift, R., Chem. Eng. Sci., 1992, vol. 47, p. 4415.

    CAS  Article  Google Scholar 

  26. 26

    Hashem, M.A., Alexandria Eng. J., 2005, vol. 44, p. 477.

    CAS  Google Scholar 

  27. 27

    Mekasut, L., Molinier, J., and Angelino, H., Chem. Eng. Sci., 1978, vol. 33, p. 821.

    CAS  Article  Google Scholar 

  28. 28

    Agogo, H., Semenov, S., Ortega, F., Rubio, R.G., Starov, V.M., and Velarde, M.G., Prog. Colloid Polym. Sci., 2012, vol. 139, p. 1.

    CAS  Google Scholar 

  29. 29

    Bochkareva, E.M., Lei, M.-K, Terekhov, V.V., and Terekhov, V.I., Inzh.-Fiz. Zh., 2019, vol. 92, p. 2208.

    Google Scholar 

  30. 30

    Poverkhnostno-aktivnye veshchestva i moyushchie sredstva. Spravochnik (Surfactants and Detergents: A Handbook), Abramzon, A.A., Ed., Moscow: Giperoks, 1993.

    Google Scholar 

  31. 31

    Terekhov, V.I., Terekhov, V.V., Shishkin, N.E., and Bi, K.Ch., Inzh.-Fiz. Zh., 2010, vol. 83, p. 829.

    Google Scholar 

  32. 32

    Terekhov, V.I. and Shishkin, N.E., Pis’ma Zh. Tekh. Fiz., 2012, vol. 38, no. 1, p. 51.

    Google Scholar 

Download references

Funding

The work was carried out within the framework of the state order to the Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, under the AAAA-A17-117030310010-9 program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. E. Shishkin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Terekhov, V.I., Shishkin, N.E. Influence of a Surfactant on Evaporation Intensity of Suspended Water Droplets. Colloid J 83, 135–141 (2021). https://doi.org/10.1134/S1061933X20060186

Download citation