Abstract
A continuous laminar flow reactor for the synthesis of nanopowder in microemulsion is described. The reactor is suitable for separated handling with nucleation, growth, and stabilization processes. The synthesis of iron oxide nanoparticles was selected as a model case. A water−sodium dodecyl sulphate−cyclohexene system was used as the microemulsion system for dissolving reactive aqueous solution, precursor, and a particle stabilizer. The product was purified and transferred to the aqueous phase. The result was a colloid solution of iron oxide nanoparticles in water of 50–200 nm in size with a zeta potential ranging from –25 to –57 mV. The product was characterized by UV-VIS spectroscopy, powder XRD, dynamic light scattering, electron microscopy, and electron diffraction. The results showed that water-in-oil microemulsion method is useful for the synthesis of nanopowders to obtain large amounts of stable product.
This is a preview of subscription content, access via your institution.









REFERENCES
Nourafkan, E., Asachi, M., Gao, H., Raza, G., and Wen, D., J. Ind. Eng. Chem., 2017, vol. 50, p. 57.
Jun, Y., Huh, Y.-M., Choi, J., Lee, J.-H., Song, H.-T., Kim, S., Yoon, S., Kim, K.-S., Shin, J.-S., Suh, J.-S., and Cheon, J., J. Am. Chem. Soc., 2005, vol. 127, p. 5732.
Thomas, G., Demoisson, F., Chassagnon, R., Po-pova, E., and Millot, N., Nanotechnology, 2016, vol. 27, p. 135 604.
Elbasuney, S. and Mostafa, S.F., Powder Technol., 2015, vol. 278, p. 72.
Jung, Y.J., Park, S.H., Song, K.H., and Choe, J., Powder Technol., 2012, vol. 217, p. 325.
Bal, V. and Bandyopadhyaya, R., Chem. Eng. J., 2019, vol. 371, p. 43.
Corradi, A.B., Bondioli, F., Ferrari, A.M., Focher, B., and Leonelli, C., Powder Technol., 2006, vol. 167, p. 45.
Tovstun, S.A. and Razumov, V.F., Russ. Chem. Rev., 2011, vol. 80, p. 953.
Moulik, S.P. and Paul, B.K., Adv. Colloid Interface Sci., 1998, vol. 78, p. 99.
Razumov, V.F. and Tovstun, S.A., Colloid J., 2019, vol. 81, p. 337.
Ghosh, S., Ghatak, C., Banerjee, C., Mandal, S., Kuchlyan, J., and Sarkar, N., Langmuir, 2013, vol. 29, p. 10 066.
Darab, J.G., Pfund, D.M., Fulton, J.L., Linehan, J.C., Capel, M., and Ma, Y., Langmuir, 1994, vol. 10, p. 135.
Drmota, A., Drofenik, M., Koselj, J., and Znidarsic, A., in Microemulsions—An Introduction to Properties and Applications, Najjar R., Ed., InTech, 2012. https://doi.org/10.5772/36154.
Makovec, D., Košak, A., Žnidaršič, A., and Drofenik, M., J. Magn. Magn. Mater., 2005, vol. 289, p. 32.
Perez-Coronado, A.M., Calvo, L., Alonso-Mora-les, N., Heras, F., Rodriguez, J.J., and Gilarranz, M.A., Colloids Surf. A, 2016, vol. 497, p. 28.
Aubery, C., Solans, C., and Sanchez-Dominguez, M., Langmuir, 2011, vol. 27, p. 14 005.
Uskoković, V. and Drofenik, M., Colloids Surf. A, 2005, vol. 266, p. 168.
Abazari, R., Heshmatpour, F., and Balalaie, S., ACS Catal., 2013, vol. 3, p. 139.
Dar, M., Shah, J., Siddiqui, W.A., and Kotnala, R.K., Appl. Nanosci., 2014, vol. 4, p. 675.
Demoisson, F., Ariane, M., Piolet, R., and Bernard, F., Adv. Eng. Mater., 2011, vol. 13, p. 487.
Ahmadi, R., Malek, M., Hosseini, H.R.M., Shokrgozar, M.A., Oghabian, M.A., Masoudi, A., Gu, N., and Zhang, Y., Mater. Chem. Phys., 2011, vol. 131, p. 170.
Liao, N., Wu, M., Pan, F., Lin, J., Li, Z., Zhang, D., Wang, Y., Zheng, Y., Peng, J., Liu, X., and Liu, J., Sci. Rep., 2016, vol. 6, p. 18 746.
Boyer, C., Whittaker, M.R., Bulmus, V., Liu, J., and Davis, T.P., NPG Asia Mater., 2010, vol. 2, p. 23.
Hill, C.G. and Root, T.W., Introduction to Chemical Engineering Kinetics and Reactor Design, New York: Wiley, 2014.
Barrow, M., Taylor, A., Fuentes-Caparros, A.M., Sharkey, J., Daniels, L.M., Mandal, P., Park, B.K., Murray, P., Rosseinsky, M.J., and Adams, D.J., Biomater. Sci., 2018, vol. 6, p. 101.
Gupta, A.K. and Gupta, M., Biomaterials, 2005, vol. 26, p. 3995.
Singh, N., Jenkins, G.J.S., Asadi, R., and Doak, S.H., Nano Rev., 2010, vol. 1, p. 5358.
Cavasino, F.P., Sbriziolo, C., and Liveri, M.L.T., J. Chem. Soc., Faraday Trans., 1998, vol. 94, p. 395.
Gobe, M., Kon-No, K., Kandori, K., and Kitahara, A., J. Colloid Interface Sci., 1983, vol. 93, p. 293.
Sinha, M.K., Sahu, S.K., Meshram, P., Prasad, L.B., and Pandey, B.D., Powder Technol., 2015, vol. 276, p. 214.
Inouye, K., Endo, R., Otsuka, Y., Miyashiro, K., Kaneko, K., and Ishikawa, T., J. Phys. Chem., 1982, vol. 86, p. 1465.
Patterson, A.L., Phys. Rev., 1939, vol. 56, p. 978.
Wu, M., Zhang, D., Zeng, Y., Wu, L., Liu, X., and Liu, J., Nanotechnology, 2015, vol. 26, p. 115 102.
Funding
Financial support of the Grant Academy of Czech Republic of project “Advanced Experimental and Theoretical Approaches to Size-Dependent Phase Diagrams of Nanoalloys” (GA17-15405S) is gratefully acknowledged. This research has also been financially supported by the MEYS CR under the project CEITEC 2020 (LQ1601) and the Horizon 2020 Research and Innovation Program under the grant agreement no. 810 626 (SINNCE).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflict of inte-rest.
Rights and permissions
About this article
Cite this article
Sopoušek, J., Pinkas, J., Buršík, J. et al. Continuous Flow Synthesis of Iron Oxide Nanoparticles Using Water-in-Oil Microemulsion. Colloid J 82, 727–734 (2020). https://doi.org/10.1134/S1061933X20060174
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1061933X20060174