Skip to main content
Log in

High-Density Carbon Adsorbents for Natural Gas Storage

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Physicochemical regularities are studied for the synthesis of molded active carbons based on coconut shells and peat, with a latex emulsion and a carboxymethyl cellulose (CMC) sodium salt solution being used as binding agents. The materials are obtained at compacting pressures of 25, 50, and 100 MPa. The specific surface areas of the composite samples obtained from peat and coconut shells are SBET ≈ 1320 and ≈1290 m2/g, respectively. The specific micropore volumes of the composites based on peat and coconut shells are W0 = 0.50 and 0.45 cm3/g, respectively. Latex-modified carbon samples have a higher bulk density than those molded with CMC. The molding of the active carbons is accompanied by partial degradation of their porous structure. The Dubinin theory of volume filling of micropores (TVFM) has been employed to calculate the values of adsorption and active specific capacity of the molded adsorbents with respect to methane at a temperature of 273 K and a pressure of up to 100 bar. The experimental and calculated data have shown that the active capacity of the new microporous carbon composite materials may be as large as 180 m3 (NTP)/m3, when the pressure drops from 100 to 1 bar. It has been concluded that it is reasonable to employ the TVFM for preliminary calculations of the parameters of adsorption systems used for natural gas storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. NTP denotes normal temperature (20°C) and pressure (101325 Pa).

REFERENCES

  1. Tsivadze, A.Yu., Aksyutin, O.E., Ishkov, A.G., Men’shchikov, I.E., Fomkin, A.A., Shkolin, A.V., Khozina, E.V., and Grachev, V.A., Russian Chemical Reviews, 2018, vol. 87, p. 950.

    Article  CAS  Google Scholar 

  2. Shkolin, A.V., Fomkin, A.A., Tsivadze, A.Yu., Anuchin, K.M., Men’shchikov, I.E., and Pulin, A.L., Protection of Metals and Physical Chemistry of Surfaces, 2016, vol. 52, p. 955.

  3. Goetz, V., Pupier, O., and Guillot, A., Adsorption, 2006, vol. 12, p. 55.

    Article  CAS  Google Scholar 

  4. Protection of Metals and Physical Chemistry of Surfaces. 2012, vol. 48, p. 614.

  5. Rios, R.B., Silva, F.W.M., Torres, A.E.B., Azevedo, D.C.S., and Cavalcante, C.L., Jr., Adsorption, 2009, vol. 15, p. 271.

    Article  CAS  Google Scholar 

  6. Strizhenov, E.M., Zherdev, A.A., Podchufarov, A.A., Chugaev, S.S., and Kuznetsov, R.A., Chem. Pet. Eng., 2016, vol. 51, p. 786.

    Article  CAS  Google Scholar 

  7. Strizhenov, E.M., Zherdev, A.A., Podchufarov, A.A., Chugaev, S.S., Kuznetsov, R.A., and Zhidkov, D.A., Chem. Pet. Eng., 2016, vol. 51, p. 812.

    Article  CAS  Google Scholar 

  8. Chugaev, S.S., Strizhenov, E.M., Zherdev, A.A., Kuznetsov, R.A., Podchufarov, A.A., and Zhidkov, D.A., Chem. Pet. Eng., 2017, vol. 52, p. 846.

    Article  CAS  Google Scholar 

  9. Advanced Research Project Agency, US DOE, 2012.

  10. Dubinin, M.M., Adsorbtsiya i poristost’ (Adsorption and Porosity), Moscow: VAKhZ, 1972.

  11. Fenelonov, V.B., Poristyi uglerod (Porous Carbon), Novosibirsk: Inst. Katal. SO RAN, 1995.

  12. Strizhenov, E.M., Zherdev, A.A., Petrochenko, R.V., Zhidkov, D.A., Kuznetsov, R.A., Chugaev, S.S., Podchufarov, A.A., and Kurnasov, D.V., Chem. Pet. Eng., 2017, vol. 52, p. 838.

    Article  CAS  Google Scholar 

  13. Lozano-Castello, D., Cazorla-Amoros, D., Linares-Solano, A., and Quinn, D.F., Carbon, 2002, vol. 40, p. 2817.

    Article  CAS  Google Scholar 

  14. Biloe, S., Goetz, V., and Mauran, S., Carbon, 2001, vol. 39, p. 1653.

    Article  CAS  Google Scholar 

  15. Byamba-Ochir, N., Shim, W.G., Balathanigaimani, M.S., and Moon, H., Appl. Energy, 2017, vol. 190, p. 257.

    Article  CAS  Google Scholar 

  16. Inomata, K., Kanazawa, K., Urabe, Y., Hosono, H., and Araki, T., Carbon, 2002, vol. 40, p. 87.

    Article  CAS  Google Scholar 

  17. Rubel, A.M. and Stencel, J.M., Fuel, 2000, vol. 79, p. 1095.

    Article  CAS  Google Scholar 

  18. Rash, T.A., Gillespie, A., Holbrook, B.P., Hiltzik, L.H., Romanos, J., Soo, Y.C., Sweany, S., and Pfeifer, P., Fuel, 2017, vol. 200, p. 371.

    Article  CAS  Google Scholar 

  19. Men’shchikov, I.E., Fomkin, A.A., Tsivadze, A.Yu., Shkolin, A.V., Strizhenov, E.M., and Khozina, E.V., Adsorption, 2017, vol. 23, p. 327.

    Article  Google Scholar 

  20. ISO 697:1981. Surface active agents. Washing powders. Determination of apparent density. Method by measuring the mass of a given volume.

  21. Brunauer, S., Emmett, P.H., and Teller, E., J. Am. Chem. Soc., 1938, vol. 60, p. 309.

    Article  CAS  Google Scholar 

  22. GOST (State Standard) 15 080-77. Lateks sinteticheskii BS-50. Tekhnicheskie usloviya (Synthetic Latex BS-50. Technical Conditions), Moscow: Izd. Standartov, 1998.

  23. Lemmon, E.W., Huber, M.L., and McLinden, M.O., NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties, REFPROP. Version 9.1, 2013.

  24. Protection of Metals and Physical Chemistry of Surfaces. 2015, vol. 51, p. 493.

  25. Protection of Metals and Physical Chemistry of Surfaces. 2016, vol. 52, p. 575.

  26. Shkolin, A.V. and Fomkin, A.A., Russian Chemical Bulletin. 2009. vol. 4. p. 717.

Download references

Funding

The work was carried out within the framework of the state order no. 01201353185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Fomkin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solovtsova, O.V., Chugaev, S.S., Men’shchikov, I.E. et al. High-Density Carbon Adsorbents for Natural Gas Storage. Colloid J 82, 719–726 (2020). https://doi.org/10.1134/S1061933X20060162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20060162

Navigation