Skip to main content
Log in

Effect of the Stability of Highly Concentrated Emulsions Containing Styrene–Divinylbenzene Mixtures on the Structure of Highly Porous Copolymers Formed on Their Basis

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Highly porous polymer materials with preset pore sizes and porosities can be prepared via polymerization of dispersion media of highly concentrated water-in-oil emulsions. In this work, the effect of divinylbenzene concentration in styrene–divinylbenzene mixed dispersion media of highly concentrated emulsions on the emulsion stability and the structure of resulting polymer materials has been investigated. It has been found that the emulsion stability at 25 and 65°C decreases with an increase in divinylbenzene concentration. Therewith, the pore size in the polymer material slightly grows from 4.0 to 4.5 μm. Emulsion stability expectedly rises with the concentration of a surfactant (Span 80). It has been shown that concentrations of divinylbenzene and Span 80 equal to 10 vol % are optimal for obtaining highly porous polymers from emulsions containing ammonium peroxodisulfate as a polymerization initiator. When emulsions containing benzoyl peroxide as a polymerization initiator are used to obtain highly porous polymers, NaCl (0.02–0.03 wt %) should be added to the dispersed phase of the emulsions. In this case, emulsion stability increases due to a decrease in the Ostwald ripening rate. Accordingly, highly porous polymers with smaller pores are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Barby, D. and Haq, Z., Eur. Pat. EP0060138A1, 1982.

  2. Cameron, N.R., Sherrington, D.C., Albiston, L., and Gregory, D.P., Colloid Polym. Sci., 1996, vol. 274, p. 592.

    Article  CAS  Google Scholar 

  3. Menner, A. and Bismarck, A., Macromol. Symp., 2006, vol. 242, p. 19.

    Article  CAS  Google Scholar 

  4. Taylor-Pashow, K.M.L. and Pribyl, J.G., Solvent Extr., Ion Exch., 2019, vol. 37, p. 1.

    Article  CAS  Google Scholar 

  5. Moghbeli, M.R., Khajeh, A., and Alikhani, M., Chem. Eng. J., 2017, vol. 309, p. 552.

    Article  CAS  Google Scholar 

  6. Zhu, Y., Wang, W., Zheng, Y., Wang, F., and Wang, A., Carbohydr. Res., 2016, vol. 140, p. 51.

    Article  CAS  Google Scholar 

  7. Li, Y., Gong, C., Zhang, T., Feng, X., Zhou, X., and Li, C., React. Funct. Polym., 2018, vol. 131, p. 142.

    Article  Google Scholar 

  8. Alikhani, M. and Moghbeli, M.R., Chem. Eng. J., 2014, vol. 239, p. 93.

    Article  CAS  Google Scholar 

  9. Pulko, I., Kolar, M., and Krajnc, P., Sci. Total Environ., 2007, vol. 386, p. 114.

    Article  CAS  Google Scholar 

  10. Lu, T., Zhu, Y., Qi, Y., Wang, W., and Wang, A., Int. J. Biol. Macromol., 2018, vol. 106, p. 870.

    Article  CAS  Google Scholar 

  11. Zhang, N., Zhong, S., Zhou, X., Jiang, W., Wang, T., and Fu, J., Chem. Eng. J., 2016, vol. 298, p. 117.

    Article  CAS  Google Scholar 

  12. Ma, L., Luo, X., Cai, N., Xue, Y., Zhu, S., Fu, Z., and Yu, F., Appl. Surf. Sci., 2014, vol. 305, p. 186.

    Article  CAS  Google Scholar 

  13. Koroleva, M.Y., Shirokikh, S.A., Zagoskin, P.S., and Yurtov, E.V., Polym. Test., 2019, vol. 77, p. 105 931.

    Article  Google Scholar 

  14. Koroleva, M.Yu., Shirokikh, S.A., Khasanova, L.Kh., Babusenko, E.S., and Yurtov, E.V., Mendeleev Commun., 2019, vol. 29, p. 176.

    Article  CAS  Google Scholar 

  15. Sajad, S. and Moghbeli, M.R., React. Funct. Polym., 2020, vol. 146, p. 104 406.

    Article  Google Scholar 

  16. Koler, A., Paljevac, M., Cmager, N., Iskra, J., Kolar, M., and Krajnc, P., Polymer, 2017, vol. 126, p. 402.

    Article  CAS  Google Scholar 

  17. Ye, Y., Jin, M., and Wan, D., J. Mater. Chem. A, 2015, vol. 3, p. 13 519.

    Article  Google Scholar 

  18. Desforges, A., Backov, R., Deleuze, H., and Mondain-Monval, O., Adv. Funct. Mater., 2005, vol. 15, p. 1689.

    Article  CAS  Google Scholar 

  19. Cetinkaya, S., Khosravi, E., and Thompson, R., J. Mol. Catal. A: Chem., 2006, vol. 254, p. 138.

    Article  CAS  Google Scholar 

  20. Sherborne, C., Owen, R., Reilly, G.C., and Claeyssens, F., Mater. Des., 2018, vol. 156, p. 494.

    Article  CAS  Google Scholar 

  21. Severn, C.E., Eissa, A.M., Langford, C.R., Parker, A., Walker, M., Dobbe, J.G., Streekstra, G.J., Cameron, N.R., and Toye, A.M., Biomaterials, 2019, vol. 225, p. 119 533.

    Article  Google Scholar 

  22. Whitely, M., Rodriguez-Rivera, G., Waldron, C., Mohiuddin, S., Cereceres, S., Sears, N., Ray, N., and Cosgriff-Hernandez, E., Acta Biomater., 2019, vol. 93, p. 169.

    Article  CAS  Google Scholar 

  23. Owen, R., Sherborne, C., Paterson, T., Green, N.H., Reilly, G.C., and Claeyssens, F., J. Mech. Behav. Biomed., 2016, vol. 54, p. 159.

    Article  CAS  Google Scholar 

  24. Hu, Y., Wang, J., Li, X., Hu, X., Zhou, W., Dong, X., Wang, C., Yang, Z., and Binks, B.P., J. Colloid Interface Sci., 2019, vol. 545, p. 104.

    Article  CAS  Google Scholar 

  25. Yadav, A., Pal, J., Nandan, B., and Srivastava, R.K., Polymer, 2019, vol. 176, p. 66.

    Article  CAS  Google Scholar 

  26. McGann, C.L., Streifel, B.C., Lundin, J.G., and Wynne, J.H., Polymer, 2017, vol. 126, p. 408.

    Article  CAS  Google Scholar 

  27. Koroleva, M.Yu., Shcherbakov, V.A., Khasanova, L.Kh., Rakitin, A.I., Shirokikh, S.A., and Yurtov, E.V., Colloid J., 2018, vol. 80, p. 272.

    Article  CAS  Google Scholar 

  28. Silverstein, M.S., Prog. Polym. Sci., 2014, vol. 39, p. 199.

    Article  CAS  Google Scholar 

  29. Liu, W., He, G., and He, Z., J. Polym. Res., 2012, vol. 19, p. 1.

    Article  Google Scholar 

  30. Ceglia, G., Maheo, L., Viot, P., Bernard, D., Chi-razi, A., Ly, I., Mondain-Monval, O., and Schmitt, V., Eur. Phys. J. E: Soft Matter Biol. Phys., 2012, vol. 35, p. 1.

    Article  Google Scholar 

  31. Rohm, K., Manas-Zloczower, I., and Feke, D., Colloids Surf. A, 2019, vol. 583, p. 123 913.

    Article  Google Scholar 

  32. Azhar, U., Huyan, C., Wan, X., Xu, A., Li, H., Geng, B., and Zhang, S., Mater. Des., 2017, vol. 124, p. 194.

    Article  CAS  Google Scholar 

  33. Yurtov, E.V. and Koroleva, M.Yu., Kolloidn. Zh., 1994, vol. 56, p. 588.

    CAS  Google Scholar 

  34. Koroleva, M.Yu. and Yurtov, E.V., Colloid J., 2003, vol. 65, p. 35.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-03-00397).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shirokikh.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirokikh, S.A., Kulieva, L.E., Koroleva, M.Y. et al. Effect of the Stability of Highly Concentrated Emulsions Containing Styrene–Divinylbenzene Mixtures on the Structure of Highly Porous Copolymers Formed on Their Basis. Colloid J 82, 767–775 (2020). https://doi.org/10.1134/S1061933X20060137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20060137

Navigation