Skip to main content
Log in

Diffusion Deposition of Nanoparticles in a Layer of Granules

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The deposition of aerosol nanoparticles has been studied in a model granular filter composed of parallel monolayers of contacting spherical granules with a square packing, where each even monolayer is shifted in its plane relative to an odd layer by the granule radius in two directions normal to one another. The monolayers of the granules are oriented normal to an incident flow. The efficiencies of diffusion collection of point particles by the granules have been calculated as depending on the distance between the layers in the regime of a three-dimensional gas flow at small Reynolds numbers \(\operatorname{Re} \) \( \ll \) 1 within a Peclet number range of \({\text{Pe}}\) = 102−104. The calculation results have agreed with the published data and the results of measuring the deposition of monodisperse nanoparticles from nitrogen and helium upon filtration through layers of monodisperse metal spheres. The possibility of using a layer of granules as a diffusion battery for measuring the sizes of aerosol particles has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Pich, J., in Filtration: Principles and Practices, Matteson, M. and Orr, C., Eds., New York: Marcel Dekker, 1987, p. 1.

    Google Scholar 

  2. Uzhov, V.N. and Myagkov, B.I., Ochistka promyshlennykh gazov fil’trami (Purification of Industrial Gases by Filters), Moscow: Khimiya, 1970.

  3. Tien, C. and Ramarao, B.V., Granular Filtration of Aerosols and Hydrosols, Amsterdam: Elsevier, 2007.

    Google Scholar 

  4. Zick, A.A. and Homsy, G.M., J. Fluid Mech., 1982, vol. 115, p. 13.

    Article  CAS  Google Scholar 

  5. Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics, Leyden (Netherlands): Noordhoff, 1965, 1973.

  6. Zaman, E. and Jalali, P., Phys. A, 2010, vol. 389, p. 205.

    Article  CAS  Google Scholar 

  7. Kirsch, A.A. and Stechkina, I.B., in Fundamentals of Aerosol Science, Shaw, D.T., Ed., New York: Wiley-Interscience, 1978, p. 165.

    Google Scholar 

  8. Happel, J., J. Am. Inst. Chem. Eng., 1958, vol. 4, p. 197.

    Article  CAS  Google Scholar 

  9. Kuwabara, S., J. Phys. Soc. Jpn., 1959, vol. 14, p. 527.

    Article  Google Scholar 

  10. Brinkman, H.C., Appl. Sci. Res.,Ser. A, 1947, vol. 1, p. 27.

    Google Scholar 

  11. Mann, L.A. and Goren, S.L., Aerosol Sci. Technol., 1984, vol. 3, p. 915.

    Article  Google Scholar 

  12. Wilson, E.J. and Geancoplis, C.J., Ind. Eng. Chem., 1966, vol. 5, p. 9.

    CAS  Google Scholar 

  13. Kennard, M.L. and Meisen, A., Abstracts of Papers, Second Word Filtration Congress, London, 1979, p. 229.

  14. Tardos, G.I., Gutfinger, C., and Abuaf, N., AIChE J., 1976, vol. 22, p. 1147.

    Article  CAS  Google Scholar 

  15. Gebhard, J., Roth, C., and Stanhofen, W., J. Aerosol Sci., 1973, vol. 4, p. 371.

    Google Scholar 

  16. Lee, K.W. and Gieseke, J.A., Environ. Sci. Technol., 1979, vol. 13, p. 466.

    Article  CAS  Google Scholar 

  17. Lee, K.W., J. Aerosol Sci., 1981, vol. 12, p. 79.

    Article  Google Scholar 

  18. Kirsch, A.A. and Fuchs, N.A., J. Phys. Soc. Jpn., 1967, vol. 22, p. 1251.

    Article  Google Scholar 

  19. Lee, K.W., Read, L.D., and Gieseke, J.A., J. Aerosol Sci., 1978, vol. 9, p. 483.

    Article  Google Scholar 

  20. Ergun, S., Chem. Eng. Prog., 1952, vol. 48, p. 89.

    CAS  Google Scholar 

  21. Diouri, M., Boulaud, D., and Madelaine, G., Abstracts of Papers, Aerosols. 2nd Int. Aerosol Conf., Berlin, Oxford: Pergamon, 1986, p. 842.

  22. Kirsh, V.A., Colloid J., 2013, vol. 75, p. 656.

    Article  CAS  Google Scholar 

  23. Kirsh, V.A. and Kirsh, A.A., Colloid J., 2016, vol. 78, p. 459.

    Article  CAS  Google Scholar 

  24. Kirsh, V.A. and Kirsh, A.A., Colloid J., 2017, vol. 79, p. 474.

    Article  CAS  Google Scholar 

  25. Martin, J.J., McCabe, W.L., and Monrad, C.C., Chem. Eng. Prog., 1951, vol. 47, p. 91.

    CAS  Google Scholar 

  26. Sorensen, J.P. and Stewart, W.E., Chem. Eng. Sci., 1974, vol. 29, p. 819.

    Article  CAS  Google Scholar 

  27. Kirsh, A.A., Makaveev, P.Yu., and Kirsh, V.A., Colloid J., 2020, vol. 82, p. 122.

    Article  CAS  Google Scholar 

  28. Kirsh, V.A. and Kirsh, A.A., Colloid J., 2020, vol. 82, p. 384.

    Article  CAS  Google Scholar 

  29. Fuchs, N.A., Stechkina, I.B., and Starosselskii, V.I., Br. J. Appl. Phys., 1962, vol. 13, p. 280.

    Article  Google Scholar 

  30. Kaye, G.W.C. and Laby, T., Tables of Physical and Chemical Constants, Moscow: Fizmatgiz, 1962.

    Google Scholar 

Download references

Funding

This work was supported by the National Research Centre Kurchatov Institute (order no. 1807 of August 14, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kirsh.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirsh, V.A., Kirsh, A.A. & Makaveev, P.Y. Diffusion Deposition of Nanoparticles in a Layer of Granules. Colloid J 82, 681–688 (2020). https://doi.org/10.1134/S1061933X20060071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20060071

Navigation