Thermodynamics of the Contact Angle of a Sessile Bubble


Numerous experimental data are available on contact angles. However, the majority of them concern sessile droplets, although bubbles are more interesting from the point of view of colloid science, because a sessile bubble is distinguished by the existence of an equilibrium thin liquid film at a gas–solid interface. This paper presents the totality of modern thermodynamic equations necessary for describing the contact angle of a bubble of an arbitrary size. However, in view of their complexity, specific relationships are derived and analyzed for small although macroscopic bubbles. The dependences of a bubble contact angle on the temperature, pressure in a liquid, composition of a liquid phase, and roughness of a solid surface are considered. In the case of a pure liquid, when a gaseous phase consists of its vapor, the obtained relations are of significance for the cavitation theory. The study as a whole has a framework character, and so only the general basic results are presented. Their detailing is possible in combination with experimental data.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.


  1. 1

    Rusanov, A.I., Surf. Sci. Rep., 1996, vol. 23, p. 173.

    Google Scholar 

  2. 2

    Rusanov, A.I., Surf. Sci. Rep., 2005, vol. 58, p. 111.

    Google Scholar 

  3. 3

    Rusanov, A.I., Colloids Surf., 2014, vol. 443, p. 363.

    Google Scholar 

  4. 4

    Rusanov, A.I., Shchekin, A.K., and Tatyanenko, D.V., Colloids Surf., 2004, vol. 250, p. 263.

    Google Scholar 

  5. 5

    Tatyanenko, D.V. and Shchekin, A.K., Interfacial Phenom. Heat Transfer, 2017, vol. 5, p. 113.

    Google Scholar 

  6. 6

    Tatyanenko, D.V. and Shchekin, A.K., Colloid J., 2019, vol. 81, p. 455.

    Google Scholar 

  7. 7

    Rusanov, A.I., Esipova, N.E., and Sobolev, V.D., Dokl., 2019, vol. 202, p. 304.

    Google Scholar 

  8. 8

    Esipova, N.E., Rusanov, A.I., Sobolev, V.D., and Itskov, S.V., Colloid J., 2019, vol. 81, p. 507.

    Google Scholar 

  9. 9

    Frumkin, A.N., Acta Physicochim. URSS, 1938, vol. 9, p. 313.

    Google Scholar 

  10. 10

    Derjaguin, B.V., Acta Physicochim. URSS, 1940, vol. 12, p. 181.

    Google Scholar 

  11. 11

    Churaev, N.V. and Sobolev, V.D., Kolloidn. Zh., 1995, vol. 57, p. 888.

    Google Scholar 

  12. 12

    Churaev, N.V. and Sobolev, V.D., Adv. Colloid Interface Sci., 1995, vol. 61, p. 1.

    Google Scholar 

  13. 13

    Rusanov, A.I., Colloid J., 2019, vol. 81, p. 741.

    Google Scholar 

  14. 14

    Rusanov, A.I., Colloid J. (in press).

  15. 15

    Rusanov, A.I., Colloid J., 1998, vol. 60, p. 748.

    Google Scholar 

  16. 16

    Rusanov, A.I., J. Colloid Interface Sci., 1978, vol. 63, p. 330.

    Google Scholar 

  17. 17

    Kuni, F.M., Shchekin, A.K., Rusanov, A.I., and Widom, B., Adv. Colloid Interface Sci., 1996, vol. 65, p. 71.

    Google Scholar 

  18. 18

    Eddington, R.I. and Kenning, D.B.R., Int. J. Heat Mass Transfer, 1979, vol. 22, p. 1231.

    Google Scholar 

  19. 19

    Chigarev, N.B. and Chigareva, T.S., J. Eng. Phys., 1986, vol. 50, p. 398.

    Google Scholar 

  20. 20

    Lubetkin, S.D. and Akhtar, M., J. Colloid Interface Sci., 1996, vol. 180, p. 43.

    Google Scholar 

  21. 21

    Abarajith, H.S. and Dhir, V.K., Am. Soc. Mech. Eng.,Heat Transfer Div., 2002, vol. 372, p. 467.

    Google Scholar 

  22. 22

    Mukherjee, A. and Kandlikar, S.G., Am. Soc. Mech. Eng.,Heat Transfer Div., 2004, vol. 375, p. 555.

    Google Scholar 

  23. 23

    Phan, H.T., Caney, N., Marty, P., Colasson, S., and Gavillet, J., Int. Commun. Heat Mass Transfer, 2010, vol. 37, p. 964.

    Google Scholar 

  24. 24

    Nikolayev, V.S. and Janeček, V., Int. J. Heat Mass Transfer, 2012, vol. 55, p. 7352.

    Google Scholar 

  25. 25

    Ardron, K.H., Giustini, G., and Walker, S.P., Int. J. Heat Mass Transfer, 2017, vol. 114, p. 1274.

    Google Scholar 

  26. 26

    Gheitaghy, A.M., Saffari, H., Arshadi, S.S., and Tabatabaei, S.S., Heat Transfer Res., 2018, vol. 49, p. 423.

    Google Scholar 

  27. 27

    Neumann, A.W., Adv. Colloid Interface Sci., 1974, vol. 4, p. 105.

    Google Scholar 

  28. 28

    Zhang, H. and Zhang, X., Nanoscale, 2019, vol. 11, p. 2823.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. I. Rusanov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rusanov, A.I. Thermodynamics of the Contact Angle of a Sessile Bubble. Colloid J 82, 303–310 (2020).

Download citation