Skip to main content
Log in

Structural Characteristics and Electrical Conductivity of Porous Glasses with Different Compositions in Solutions of Sodium, Lanthanum and Iron(III) Chlorides

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The structural characteristics (structural resistance coefficient, volume porosity, tortuosity coefficient, average pore radius, specific surface area) and specific electrical conductivity of high-silica micro- and macroporous glasses with different compositions (basic magnetite-free and magnetite-containing glasses) have been studied in solutions of sodium, lanthanum, and iron(III) chlorides at a constant ionic strength. It has been found that the differences in the morphology of the pore space and characteristics of secondary silica are the reasons for different intensities of variations in the structural parameters of microporous glasses upon their long-term contact with electrolyte solutions, with the most pronounced time variations occurring in lanthanum chloride solutions. In indifferent electrolyte solutions, glass composition has no effect on the value of the efficiency coefficient. For microporous glasses in solutions containing specifically adsorbabable ions, the value of the efficiency coefficient is mainly affected by the structure of secondary silica in pore space, other conditions being equal. It has been revealed that, in iron chloride solutions, the specificity of the counterions is more pronounced for the basic porous glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Mazurin, O.V., Roskova, G.P., Aver’yanov, V.I., and Antropova, T.V., Dvukhfaznye stekla: struktura, svoistva, primenenie (Two-Phase Glasses: Structure, Properties, Application), Leningrad: Nauka, 1991.

  2. Enke, D., Janowski, F., and Schwieger, W., J. Micropor. Mesopor. Mater., 2003, vol. 60, p. 19.

    Article  CAS  Google Scholar 

  3. Antropova, T.V., Doctoral (Chem.) Dissertation, St. Petersburg: Inst. of Silicate Chemistry, Russ. Acad. Sci., 2005.

  4. De Jong, J., Lammertink, R.G.H., and Wessling, M., Lab on a Chip, 2006, vol. 6, p. 1125.

    Article  CAS  Google Scholar 

  5. Yairi, M. and Richter, C., Sens. Actuators A, Phys., 2007, vol. 137, p. 350.

    Article  CAS  Google Scholar 

  6. Zhang, C., Xing, D., and Li, Y., Biotechnol. Adv., 2007, vol. 6, p. 483.

    Article  Google Scholar 

  7. Evstrapov, A.A., Esikova, N.A., Rudnitskaja, G.E., and Antropova, T.V., Opt. Appl., 2008, vol. 38, p. 31.

    CAS  Google Scholar 

  8. He, F., Liao, Y., Lin, J., Song, J., et al., Sensors, 2014, vol. 14, p. 19402.

    Article  CAS  Google Scholar 

  9. Zakoldaev, R.A., Sergeev, M.M., Sivers, A.N., et al., Phys. Chem. Glass, 2018, vol. 44, p. 486.

    Article  CAS  Google Scholar 

  10. Andreeva, Y.M., Sergeev, M.M., Zakoldaev, R.A., et al., J. Laser Micro Nanoeng., 2018, vol. 13, p. 193.

    CAS  Google Scholar 

  11. Veiko, V.P., Zakoldaev, R.A., Sergeev, M.M., et al., Opt. Express, 2018, vol. 26, p. 28 152.

    Article  Google Scholar 

  12. Cheong, S.-W. and Mostovoy, M., Nat. Mater., 2007, vol. 6, p. 13.

    Article  CAS  Google Scholar 

  13. Hua, M., Zhang, S., Pan, B., et al., J. Hazard. Mater., 2012, vol. P, p. 317.

  14. Pshenko, O.A., Drozdova, I.A., Polyakova, I.G., et al., Phys. Chem. Glass, 2014, vol. 40, p. 167.

    Article  CAS  Google Scholar 

  15. Rybak, A. and Kaszuwara, W., J. Alloys Compd., 2015, vol. 648, p. 205.

    Article  CAS  Google Scholar 

  16. Cizman, A., Rogacki, K., Rysiakiewicz-Pasek, E., et al., J. Alloys Compd., 2015, vol. 649, p. 447.

    Article  CAS  Google Scholar 

  17. Podoynitsyn, S.N., Sorokina, O.N., and Kovarski, A.L., J. Magn. Magn. Mater., 2016, vol. 397, p. 51.

    Article  CAS  Google Scholar 

  18. Volkova, A.V., Ermakova, L.E., Kashpurina, E.A., et al., Phys. Chem. Glass, 2016, vol. 42, p. 322.

    Article  CAS  Google Scholar 

  19. Ermakova, L.E., Grinkevich, E.A., Volkova, A.V., and Antropova, T.V., Colloid J., 2018, vol. 80, p. 492.

    Article  CAS  Google Scholar 

  20. Ermakova, L.E., Grinkevich, E.A., Volkova, A.V., et al., Colloid J., 2019, vol. 81, p. 235.

    Article  CAS  Google Scholar 

  21. Ermakova, L.E., Volkova, A.V., Antropova, T.V., and Murtuzalieva, F.G., Colloid J., 2014, vol. 76, p. 546.

    Article  CAS  Google Scholar 

  22. Ermakova, L.E., Volkova, A.V., Antropova, T.V., and Zhukov, A.N., Colloid J., 2015, vol. 77, p. 283.

    Article  CAS  Google Scholar 

  23. Ermakova, L.E., Kuznetsova, A.S., Volkova, A.V., and Antropova, T.V., Colloids Surf. A, 2019, vol. 576, p. 91.

    Article  CAS  Google Scholar 

  24. Ermakova, L.E., Volkova, A.V., Kuznetsova, A.S., et al., Colloid J., 2018, vol. 80, p. 255.

    Article  CAS  Google Scholar 

  25. Ermakova, L.E., Antropova, T.V., Volkova, A.V., et al., Glass Phys. Chem., 2018, vol. 44, p. 269.

    Article  CAS  Google Scholar 

  26. Zhdanov, S.P., Wiss. Z. Friedrich-Schiller-Univ. Jena, Math.-Naturwiss. Reihe, 1987, vol. 36, p. 817.

    CAS  Google Scholar 

  27. Antropova, T.V., Kalinina, S.V., Kostyreva, T.G., et al., Glass Phys. Chem., 2015, vol. 41, p. 14.

    Article  CAS  Google Scholar 

  28. Kuznetsova, A.S., Volkova, A.V., Ermakova, L.E., and Antropova, T.V., Glass Phys. Chem., 2018, vol. 44, p. 41.

    Article  CAS  Google Scholar 

  29. Ermakova, L.E., Volkova, A.V., Faraonova, V.V., and Antropova, T.V., Colloid J., 2015, vol. 77, p. 715.

    Article  CAS  Google Scholar 

  30. Erdey-Grúz, T., Transport Phenomena in Aqueous Solutions, Budapest: Akadémiai Kiadó, 1974.

    Google Scholar 

  31. Ermakova, L.E., Zhura, N.A., and Sidorova, M.P., Kolloidn. Zh., 1993, vol. 55, p. 62.

    CAS  Google Scholar 

  32. Volkova, A.V., Ermakova, L.E., Antropova, T.V., and Sidorova, M.P., Colloid J., 2010, vol. 72, p. 6.

    Article  CAS  Google Scholar 

  33. Lur'e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook on Analytical Chemistry), Moscow: Khimiya, 1989.

Download references

ACKNOWLEDGMENTS

The study was performed using the equipment of the Research Park of St. Petersburg State University (Interdisciplinary Resource Center for Nanotechnology, the Cryogenic Department). We are grateful to researchers at the Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, T.G. Kostyreva, L.F. Dikaya, L.N. Kurilenko, and E.A. Semenova for implementation of the chemical analysis of the glasses.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 17-03-01011а. The samples of two-phase and porous glasses were prepared at the Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, within the framework of state order no. 0097-2019-0015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Ermakova.

Ethics declarations

The authors declare that they have no conflict of in-terest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermakova, L.E., Kuznetsova, A.S., Antropova, T.V. et al. Structural Characteristics and Electrical Conductivity of Porous Glasses with Different Compositions in Solutions of Sodium, Lanthanum and Iron(III) Chlorides. Colloid J 82, 262–274 (2020). https://doi.org/10.1134/S1061933X20030035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20030035

Navigation