Skip to main content
Log in

Asymmetry of Gas Transfer through a Composite Membrane

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Gas transfer through a composite has been studied. The main parameters affecting the membrane permeability have been determined. It has been shown that, in the presence of a viscous flow of a gas through a porous support, its flow rate through the composite membrane depends on the direction of transfer. The intensity of this effect increases with an increase in the support resistance to the Knudsen flow and decreases with reduction in the support resistance to the viscous flow or a decrease in the pressure drop across the membrane. It has been found that, in the presence of the asymmetry effect, the gas flow rate through the composite membrane is lower when the gas is transferred from a selective layer to a support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yampolskii, Y. and Freeman, B., Membrane Gas Separation, Singapore: Wiley, 2011.

    Google Scholar 

  2. Baker, R.W., Membrane Technology and Applications, Wiley, 2012.

    Book  Google Scholar 

  3. Galizia, M., Chi, W.S., Smith, Z.P., Merkel, T.C., Baker, R.W., and Freeman, B.D., Macromolecules, 2017, vol. 50, p. 7809.

    Article  CAS  Google Scholar 

  4. Zhou, J., Tran, M.-M., Haldeman, A.T., Jin, J., Wagener, E.H., and Husson, S.M., J. Membr. Sci., 2014, vol. 450, p. 478.

    Article  CAS  Google Scholar 

  5. Park, H.B., Kamcev, J., Robeson, L.M., Elimelech, M., and Freeman, B.D., Science (Washington, D. C.), 2017, vol. 356, p. 1137.

    Article  CAS  Google Scholar 

  6. Awasthi, K., Kulshreshtha, V., Tripathi, B., Acharya, N.K., Singh, M., and Vijay, Y.K., Bull. Mater. Sci., 2006, vol. 29, p. 261.

    Article  CAS  Google Scholar 

  7. Kurchatov, I.M., Laguntsov, N.I., Okunev, A.Y., Pisarev, G.I., Tronin, V.N., and Uvarov, V.I., Ars Sep. Acta, 2007, p. 45.

  8. Kurchatov, I.M., Laguntsov, N.I., and Skuridin, I.E., Phys. Proc., 2015, vol. 72, p. 113.

    Article  CAS  Google Scholar 

  9. Skuridin, I.E., Kurchatov, I.M., and Laguntsov, N.I., J. Phys.: Conf. Ser., 2016, vol. 751, Art. no. 012042.

    Google Scholar 

  10. Teplyakov, V.V., Tsodikov, M.V., Magsumov, M.I., and Kaptein, F., Kinet. Katal., 2007, vol. 48, p. 132.

    Article  CAS  Google Scholar 

  11. Kurchatov, I.M., Laguntsov, N.I., Uvarov, V.I., and Kurchatova, O.V., Phys.Proc., 2015, vol. 156.

    Google Scholar 

  12. Kryukov, A.V., Kurchatov, I.M., and Laguntsov, N.I., Kinet. Katal., 2012, vol. 53, p. 419.

    Article  CAS  Google Scholar 

  13. Kurchatov, I.M., Laguntsov, N.I., Tsodikov, M.V., Fedotov, A.S., and Moiseev, I.I., Kinet. Katal., 2008, vol. 49, p. 121.

    Article  CAS  Google Scholar 

  14. Filippov, A.N., Starov, V.M., Kononenko, N.A., and Berezina, N.P., Adv. Colloid Interface Sci., 2008, vol. 139, p. 29.

    Article  CAS  Google Scholar 

  15. Volkov, V.V., Mchedlishvili, B.B., Roldughin, V.I., Ivanchev, S.S., and Yaroslavtsev, A.V., Nanotechnol. Russ., 2008, vol. 3, p. 67.

    Article  Google Scholar 

  16. Volkov, A.V., Tsarkov, S.E., Gilman, A.V., Khotimsky, V.S., Roldughin, V.I., and Volkov, V.V., Adv. Colloid Interface Sci., 2015, vol. 222, p. 716.

    Article  CAS  Google Scholar 

  17. Henis, J.M.S. and Tripodi, M.K., Sep. Sci. Technol., 1980, vol. 15, p. 1059.

    Article  CAS  Google Scholar 

  18. Henis, J.M.S. and Tripodi, M.K., J. Membr. Sci., 1981, vol. 8, p. 233.

    Article  CAS  Google Scholar 

  19. Zhu, L., Yavari, M., Jia, W., Furlani, E.P., and Lin, H., Ind. Eng. Chem. Res., 2017, vol. 56, p. 351.

    Article  CAS  Google Scholar 

  20. Liu, L., Jiang, N., Burns, C.M., Chakma, A., and Feng, X., J. Membr. Sci., 2009, vol. 338, p. 153.

    Article  CAS  Google Scholar 

  21. Lillepärg, J., Breitenkamp, S., Shishatskiy, S., Pohlmann, J., Wind, J., Scholles, C., and Brinkmann, T., Membranes, 2019, vol. 9, no. 2, p. 22.

    Article  Google Scholar 

  22. Roldughin, V.I., Zhdanov, V.M., and Shabatin, A.V., Colloid J., 2016, vol. 78, p. 652.

    Article  CAS  Google Scholar 

  23. Roldughin, V.I. and Zhdanov, V.M., Adv. Colloid Interface Sci., 2011, vol. 168, p. 223.

    Article  CAS  Google Scholar 

  24. Roldughin, V.I., Zhdanov, V.M., and Sherysheva, E.E., Colloid J., 2012, vol. 74, p. 717.

    Article  CAS  Google Scholar 

  25. Ugrozov, V.V. and Filippov, A.N., Colloid J., 2012, vol. 74, p. 739.

    Article  CAS  Google Scholar 

  26. Ugrozov, V.V., Colloid J., 2016, vol. 78, p. 115.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-19-00738.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ugrozov.

Ethics declarations

The authors declare that they have no conflict of in-terest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugrozov, V.V., Volkov, A.V. Asymmetry of Gas Transfer through a Composite Membrane. Colloid J 82, 194–199 (2020). https://doi.org/10.1134/S1061933X20020143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20020143

Navigation