Skip to main content
Log in

Molecular Dynamics Simulation of the Stability of Spherical Nanoclusters of Methane and Carbon Dioxide Hydrates

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The stability of spherical nanoclusters of methane and carbon dioxide hydrates in the environment of supercooled water has been studied by the molecular dynamics method under the isochoric and isobaric conditions. The process of system melting has been considered within a temperature range of 180–280 K and at pressures of 1, 50, and 100 atm (under isobaric conditions). It has been shown that clusters of CO2 hydrate melt at temperatures lower than clusters of CH4 hydrate do. The difference between the melting temperatures of the hydrates is about 40 K, which is explained by the higher solubility of carbon dioxide in water. The diffusion coefficients calculated for water and the gases attest to different mechanisms of melting their hydrates. The stability of the hydrates under the isochoric conditions appears to be lower than that under the isobaric conditions. For simulation under isobaric conditions, changes in the pressure and the degree of carbon dioxide filling have no effect on the position of the range of melting of hydrate nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Boswell, R., Schoderbek, D., Collett, T.S., Ohtsuki, S., White, M., and Anderson, B.J., Energ. Fuels, 2017, vol. 31, p. 140.

    Article  CAS  Google Scholar 

  2. Uddin, M. and Coombe, D., J. Phys. Chem. C, 2014, vol. 118, p. 1921.

    Google Scholar 

  3. Striolo, A., Mol. Phys., 2019. https://doi.org./10.1080/00268976.2019.1646436

  4. English, N.J. and Macelroy, J.M.D., Chem. Eng. Sci., 2015, vol. 121, Art no. 133.

    Article  CAS  Google Scholar 

  5. Costandy, J., Michalis, V.K., Tsimpanogiannis, I.N., Stubos, A.K., and Economou, I.G., J. Chem. Phys., 2015, vol. 143, Art no. 094506.

    Article  Google Scholar 

  6. Smirnov, G.S. and Stegailov, V.V., J. Chem. Phys., 2012, vol. 136, Art no. 044523.

    Article  Google Scholar 

  7. Miguez, J.M., Conde, M.M., Torre, J.-P., Blas, F.J., Pineiro, M.M., and Vega, C., J. Chem. Phys., 2015, vol. 142, p. 124505.

    Article  CAS  Google Scholar 

  8. Liu, Y., Zhao, J., and Xu, J., Comput. Theor. Chem., 2012, vol. 991, p. 165.

    Article  CAS  Google Scholar 

  9. Uddin, M. and Coombe, D., J. Phys. Chem. C, 2014, vol. 118, p. 1971.

    Article  CAS  Google Scholar 

  10. Bagherzadeh, S.A., Alavi, S., Ripmeester, J., and En-glezos, P., J. Chem. Phys., 2015, vol. 142, Art no. 214701.

    Article  Google Scholar 

  11. Sarupria, S. and Debenedetti, P.G., J. Phys. Chem. A, 2011, vol. 115, p. 6102.

    Article  CAS  Google Scholar 

  12. Baez, L.A. and Clancy, P., Ann. N. Y. Acad. Sci., 1994, vol. 715, p. 177.

    Article  CAS  Google Scholar 

  13. English, N.J., Johnson, J.K., and Taylor, C.E., J. Chem. Phys., 2005, vol. 123, Art no. 244503.

    Article  Google Scholar 

  14. Subbotin, O.S., Belosludov, V.R., Brodskaya, E.N., Piotrovskaya, E.M., and Sizov, V.V., Russ. J. Phys. Chem., 2008, vol. 82, p. 1303.

    Article  CAS  Google Scholar 

  15. Brodskaya, E.N. and Sizov, V.V., Colloid J., 2009, vol. 71, p. 589.

    Article  CAS  Google Scholar 

  16. Brodskaya, E.N. and Sizov, V.V., Colloid J., 2013, vol. 75, p. 366.

    Article  CAS  Google Scholar 

  17. Abraham, M.J., Murtola, T., Schulz, R., Pall, S., Smith, J.C., Hess, B., and Lindahl, E., SoftwareX, 2015, vol. 1, p. 19.

    Article  Google Scholar 

  18. Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J.C., J. Comput. Chem., 2008, vol. 26, p. 1701.

    Article  Google Scholar 

  19. Jorgensen, W.L., Madura, J.D., and Swenson, C.J., J. Am. Chem. Soc., 1984, vol. 106, p. 6638.

    Article  CAS  Google Scholar 

  20. Potoff, J.J. and Siepmann, J.I., AIChE J., 2001, vol. 47, p. 1676.

    Article  CAS  Google Scholar 

  21. Abascal, J.L.F., Sanz, E., García Fernández, R., and Vega, C., J. Chem. Phys., 2005, vol. 122, p. 234511.

    Article  CAS  Google Scholar 

  22. Waage, M.H., Vlugt, T.J.H., and Kjelstrup, S., J. Phys. Chem. B, 2017, vol. 121, p. 7336.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-03-00654 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sizova.

Ethics declarations

The authors declare that they have no conflict of i-nterest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sizova, A.A., Sizov, V.V. & Brodskaya, E.N. Molecular Dynamics Simulation of the Stability of Spherical Nanoclusters of Methane and Carbon Dioxide Hydrates. Colloid J 82, 180–187 (2020). https://doi.org/10.1134/S1061933X2002012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X2002012X

Navigation