Skip to main content
Log in

Investigation of the Nonexchange Sorption of Diverse Electrolytes by a Heterogeneous Sulfonic Cation-Exchange Membrane

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The nonexchange sorption of diverse electrolytes by an MK-40 sulfonic cation-exchange membrane has been studied by conductometry without separating solution and membrane phases. The data of sorption experiments performed within the framework of the two-phase microheterogeneous model of an ion-exchange material have been used to find the Donnan constant for the MK-40 membrane in solutions of electrolytes, namely, HCl, NaOH, NaCl, MgCl2, CaCl2, and BaCl2. The concentration of an electrolyte sorbed by the membrane has been determined as depending on the nature and concentration of an equilibrium solution. Factors that have the most significant effect on the concentration of a sorbed electrolyte and the Donnan constant, such as the specific moisture capacity of the membrane and the nature and charge of counter- and coions, have been studied. The volume fractions of the gel and equilibrium solution phases have been determined by two methods, i.e., from the experimental data on the membrane specific conductivity in solutions of different natures and concentrations and from the data on the nonexchange sorption calculated within the microheterogeneous model of the membrane structure. It has been shown that the Donnan constant may be calculated for the MK-40 membrane in the salt solutions by a simplified method from the data on the sorption of an electrolyte of only one concentration, provided that the volume fractions of the conducting phases in the membrane are known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Glueckauf, E., Proc. R. Soc. London: Math. Phys. Eng. Sci., 1962, vol. 268, p. 350.

  2. Helfferich, F., Ionenaustanscher, Weinheim: Chemie, 1959.

    Google Scholar 

  3. Kokotov, Yu.A. and Pasechnik, V.A., Ravnovesie i kinetika ionnogo obmena (The Equilibrium and Kinetics of Ion Exchange), Leningrad: Khimiya, 1970.

  4. Griessbach, R., Austauschadsorption in Theorie und Praxis, Berlin: Akademie, 1957.

    Google Scholar 

  5. Galizia, M., Benedetti, F.M., Paul, D.R., and Freeman, B.D., J. Membr. Sci., 2017, vol. 535, p. 132.

    Article  CAS  Google Scholar 

  6. Gimmi, T. and Alt-Epping, P., Geochim. Cosmochim. Acta, 2018, vol. 232, p. 1.

    Article  CAS  Google Scholar 

  7. Galama, A.H., Post, J.W., Cohen Stuart, M.A., and Biesheuvel, P.M., J. Membr. Sci., 2013, vol. 442, p. 131.

    Article  CAS  Google Scholar 

  8. Chang, K., Luo, H., and Geise, G.M., J. Membr. Sci., 2019, vol. 574, p. 24.

    Article  CAS  Google Scholar 

  9. Zabolotskii, V.I. and Nikonenko, V.V., Perenos ionov v membranakh (Ion Transfer in Membranes), Moscow: Nauka, 1996.

  10. Zabolotsky, V.I. and Nikonenko, V.V., J. Membr. Sci., 1993, vol. 79, p. 181.

    Article  CAS  Google Scholar 

  11. Zabolotskii, V.I. and Lebedev, K.A., Elektrokhimiya, 1989, vol. 25, p. 905.

    CAS  Google Scholar 

  12. Zabolotskii, V.I., Lebedev, K.A., Nikonenko, V.V., and Shudrenko, A.A., Elektrokhimiya, 1993, vol. 29, p. 811.

    CAS  Google Scholar 

  13. Zabolotskii, V.I., Gnusin, N.P., and Sheretova, G.M., Zh. Fiz. Khim., 1985, vol. 59, p. 2467.

    CAS  Google Scholar 

  14. Zabolotskii, V.I., Nikonenko, V.V., Kostenko, O.N., and El’nikova, L.F., Zh. Fiz. Khim., 1993, vol. 67, p. 2423.

    CAS  Google Scholar 

  15. GOST (State Standard) 17552-72: Ion Exchange Membranes. Methods of Determination of Total and Equilibrium Exchange Capacity, 1972.

  16. Berezina, N.P., Kononenko, N.A., Dyomina, O.A., and Gnusin, N.P., Adv. Colloid Interface Sci., 2008, vol. 139, p. 3.

    Article  CAS  Google Scholar 

  17. Gnusin, N.P., Demina, O.A., and Sheretova, G.M., Russ. J. Phys. Chem. A, 1998, vol. 72, p. 814.

    Google Scholar 

  18. Bryk, M.T., Zabolotskii, V.I., Atamanenko, I.D., and Dvorkina, G.A., Khim. Tekhnol. Vody, 1989, vol. 11, p. 497.

    Google Scholar 

  19. Tuan, L.X. and Buess-Herman, C., Chem. Phys. Lett., 2007, vol. 434, p. 49.

    Article  CAS  Google Scholar 

  20. Demina, O.A., Kononenko, N.A., Falina, I.V., and Demin, A.V., Colloid J., 2017, vol. 79, p. 317.

    Article  CAS  Google Scholar 

  21. Gnusin, N.P., Karpenko, L.V., Demina, O.A., and Berezina, N.P., Russ. J. Phys. Chem. A, 2001, vol. 75, p. 1550.

    Google Scholar 

  22. Falina, I.V., Zabolotsky, V.I., Demina, O.A., and Sheldeshov, N.V., J. Membr. Sci., 2019, vol. 573, p. 520.

    Article  CAS  Google Scholar 

  23. Koter, S., Piotrowski, P., and Kerres, J., J. Membr. Sci., 1999, vol. 153, p. 83.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 19-13-00339.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Falina.

Ethics declarations

The authors declare that they have no conflict of int-erest.

Additional information

Translated by E. Khozina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demina, O.A., Falina, I.V., Kononenko, N.A. et al. Investigation of the Nonexchange Sorption of Diverse Electrolytes by a Heterogeneous Sulfonic Cation-Exchange Membrane. Colloid J 82, 108–114 (2020). https://doi.org/10.1134/S1061933X20020039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20020039

Navigation