Skip to main content

Tensiometric and Rheological Characteristics of Fractions of Humic and Hymatomelanic Acids

Abstract

The Du Nouy ring detachment and pendant drop methods have been employed to study the tensiometric (dynamic and equilibrium surface tensions) and surface rheological (viscoelasticity modulus and phase angle) characteristics of aqueous solutions of fractions of humic and hymatomelanic acids at a solution–air interface. It has been found that the fraction of low-molecular-weight hymatomelanic acids has high surface activity, while its surface layers are characterized by high viscoelasticity and storage elastisity moduli. The experimental dependences of the equilibrium surface tension and viscoelasticity modulus on the concentration of hymatomelanic acid salt solutions are adequately described in terms of the model of real two-dimensional solutions for polymolecular adsorption of polyelectrolytes.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Notes

  1. The programs were developed by E.V. Aksenenko (Eugene_Aksenenko@ukr.net).

REFERENCES

  1. Kukharenko, T.A., Okislennye v plastakh burye i kamennye ugli (Brown and Hard Coals Oxidized in Seams), Moscow: Nedra, 1972.

  2. Glebova, G.I., Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Moscow State Univ., 1980.

  3. Anastas, P.T. and Warner, J.C., Green Chemistry: Theory and Practice, New York: Oxford Univ. Press, 1998.

    Google Scholar 

  4. Perminova, I.V. and Zhilin, D.M., in Zelenaya khimiya v Rossii (Green Chemistry in Russia), Lunin, V.V., Tundo, P., and Lokteva, E.S., Eds., Moscow: Mosk. Gos. Univ., 2004.

  5. Lunin, V.V., Lokteva, E.S., and Golubina, E.V., Khimiya v interesakh ustoichivogo razvitiya – zelenaya khimiya (Chemistry in Interests of Sustained Development: Green Chemistry), Moscow: Mosk. Gos. Univ., 2007.

  6. Obzor rynka guminovykh udobrenii v Rossii i mire (The Review of Humic Fertilizers Market in Russia and over the World), Moscow: OOO “IG “Infomain,” 2018.

  7. Terkhi, M.C., Taleb, F., Gossart, P., Semmoud, A., and Addou, A., J. Photochem. Photobiol. A, 2008, vol. 198, p. 205.

    CAS  Article  Google Scholar 

  8. Aquino, A.J.A., Tunega, D., Pašalić, H., Haberhauer, G., Gerzabek, M.H., and Lischka, H., Chem. Phys., 2008, vol. 349, p. 69.

    CAS  Article  Google Scholar 

  9. Lu, Y., Yan, M., and Korshin, G.V., Geochim. Cosmochim. Acta, 2017, vol. 213, p. 308.

    CAS  Article  Google Scholar 

  10. Baker, H. and Khalili, F., Anal. Chim. Acta, 2005, vol. 542, p. 240.

    CAS  Article  Google Scholar 

  11. Reiller, B.P., Moulin, V., Casanova, F., and Dautel, C., Radiochim. Acta, 2003, vol. 91, p. 513.

    CAS  Article  Google Scholar 

  12. Takahashi, Y. and Minai, Y., J. Nucl. Radiochem. Sci., 2004, vol. 5, p. 37.

    CAS  Article  Google Scholar 

  13. Giokas, D.L., Antelo, J., Paleologos, E.K., Arce, F., and Karayannis, M.I., J. Environ. Monit., 2002, vol. 4, p. 505.

    CAS  PubMed  Article  Google Scholar 

  14. Mishima, S. and Nakagawa, T., J. Membr. Sci., 2004, vol. 228, p. 1.

    CAS  Article  Google Scholar 

  15. Negre, M., Schulten, H.-R., Gennari, M., and Vindrola, D., J. Environ. Sci. Health B, 2001, vol. 36, p. 107.

    CAS  PubMed  Article  Google Scholar 

  16. Fukushima, M. and Tatsumi, K., Colloids Surf. A, 1999, vol. 155, p. 249.

    CAS  Article  Google Scholar 

  17. Struyk, Z. and Sposito, G., Geoderma, 2001, vol. 102, p. 329.

    CAS  Article  Google Scholar 

  18. Antilén, M., González, M.A., Pérez-Ponce, M., Gacitúa, M., Valle, M.A., Armijo, F., Río, R., and Ramírez, G., Int. J. Electrochem. Sci., 2011, vol. 6, p. 901.

    Google Scholar 

  19. Martínez, C.M., Celis, L.B., and Cervantes, F.J., Appl. Microbiol. Biotechnol., 2013, vol. 97, p. 9897.

    PubMed  Article  CAS  Google Scholar 

  20. Jiang, L., Mao, X., Yu, J., and Gan, F., Anti Corros. Meth. M, 2008, vol. 55, p. 204.

    CAS  Article  Google Scholar 

  21. Kasatkina, M.V., Fedorov, S.E., Gorokhov, M.V., and Kuratorov, A.V., RF Patent No. 2 221 900 (2004).

  22. Yudina, N.V., Pisareva, S.I., Pynchenkov, V.I., and Loskutova, Yu.V., Khim. Rastit. Syr’ya, 1998, no. 4, p. 33.

  23. Khil’ko, S.L., Efimova, I.V., and Smirnova, O.V., Khim. Tverd. Topl., 2011, no. 6, p. 3.

  24. Efimova, I.V., Smirnova, O.V., and Khil’ko, S.L., Russ. J. Appl. Chem., 2012, vol. 85, p. 1351.

    CAS  Article  Google Scholar 

  25. Smirnova, O.V., Efimova, I.V., and Khil’ko, S.L., Russ. J. Appl. Chem., 2012, vol. 85, p. 252.

    CAS  Article  Google Scholar 

  26. Efimova, I.V., Khil’ko, S.L., Smirnova, O.V., Berezhnoi, V.S., and Rybachenko, V.I., Khim. Tverd. Topl., 2013, no. 4, p. 3.

  27. Fed’ko, I.V., Gostishcheva, M.V., and Ismatova, R.R., Khim. Rastit. Syr’ya, 2005, no. 1, p. 49.

  28. Pant, K., Singh, B., and Thakur, N., Int. J. Toxicol. Pharmacol. Res., 2012, vol. 4, no. 2, p. 17.

    Google Scholar 

  29. Akbas, A., Silan, C., Gulpinar, M.T., Sancak, E.B., Ozkanli, S.S., and Cakir, D.U., Inflammation, 2015, vol. 38, p. 2042.

    CAS  PubMed  Article  Google Scholar 

  30. Berkovich, A.M., http://stomfaq.ru/53851/index. htm-l.

  31. Khil’ko, S.L. and Semenova, R.G., Khim. Tverd. Topl., 2016, no. 6, p. 66.

  32. Aristilde, L. and Sposito, G., Environ. Toxicol. Chem., 2013, vol. 32, p. 1467.

    CAS  PubMed  Google Scholar 

  33. Sutton, R. and Sposito, G., Environ. Sci. Technol., 2005, vol. 39, p. 9009.

    CAS  PubMed  Article  Google Scholar 

  34. Baalousha, M., Motelica-Heino, M., Galaup, S., and Le Coustumer, P., Microsc. Res. Tech., 2005, vol. 66, p. 299.

    CAS  PubMed  Article  Google Scholar 

  35. Piccolo, A., Soil Sci., 2001, vol. 166, p. 810.

    CAS  Article  Google Scholar 

  36. Fedotov, G.N. and Shoba, S.A., Eurasian Soil Sci., 2015, vol. 48, p. 1292.

    CAS  Article  Google Scholar 

  37. Khil’ko, S.L., Kovtun, A.I., and Fainerman, V.B., Colloid J., 2011, vol. 73, p. 110.

    Article  CAS  Google Scholar 

  38. Dmitrieva, E., Efimova, E., Siundiukova, K., and Perelomov, L., Environ. Chem. Lett., 2015, vol. 13, p. 197.

    CAS  Article  Google Scholar 

  39. Rozanova, M.S., Mylnikova, O.I., Klein, O.I., Filippova, O.I., Kholodov, V.A., Listov, E.L., and Kulikova, N.A., Eurasian Soil Sci., 2018, vol. 51, p. 1111.

    CAS  Article  Google Scholar 

  40. Meng, F., Yuan, G., Wei, J., Bi, D., Ok, Y.S., and Wang, H., Chemosphere, 2017, vol. 181, p. 461.

    CAS  PubMed  Article  Google Scholar 

  41. Soleimani, M., Hajabbasi, M.A., Afyuni, M., Isfahan, S.A., Jensen, J.K., Holm, P.E., and Borggaard, O.K., J. Environ. Qual., 2010, vol. 39, p. 855.

    CAS  PubMed  Article  Google Scholar 

  42. Lishtvan, I.I. and Kosarevich, I.V., Torfyanaya Prom-st, 1984, no. 1, p. 22.

  43. Khil’ko, S.L. and Titov, E.V., Kolloidn. Zh., 1993, vol. 55, p. 117.

    Google Scholar 

  44. Khil’ko, S.L. and Titov, E.V., Russ. J. Appl. Chem., 2000, vol. 73, p. 1458.

    Google Scholar 

  45. Khil’ko, S.L. and Titov, E.V., Khim. Tverd. Topl., 2001, no. 1, p. 78.

  46. Lotov, V.A., Maslov, S.G., and Chukhareva, N.V., Tekh. Tekhnol. Silikatov, 2004, vol. 11, nos. 3–4, p. 26.

  47. Gunsolus, I.L., Mousavi, M.P.S., Hussein, K., Bühlmann, P., and Haynes, C.L., Environ. Sci. Technol., 2015, vol. 49, p. 8078.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Tang, Z., Zhao, X., Zhao, T., Wang, H., Wang, P., Wu, F., and Giesy, J.P., Environ. Sci. Technol., 2016, vol. 50, p. 8640.

    CAS  PubMed  Article  Google Scholar 

  49. Kasymova, E.Dzh. and Li, S.P., Mezhdunar. Zh. Prikl. Fundam. Issled., 2017, no. 6(2), p. 219.

  50. Shishmina, L.V., Chukhareva, N.V., and Kravtsov, A.V., Koks Khim., 2002, no. 2, p. 7.

  51. Yudina, N.V and Tikhova, V.I., Khim. Rastit. Syr’ya, 2003, no. 1, p. 93.

  52. Popov, A.F., Lutsik, A.I., Titov, E.V., Suikov, S.Yu., and Khil’ko, S.L., RF Patent No. 5583, Byull. Izobret., No. 3 (2005).

  53. Miller, R., Makievski, A.V., and Fainerman, V.B., Stud. Interface Sci., 2001, vol. 13, p. 87.

    Google Scholar 

  54. Rusanov, A.I. and Prokhorov, V.A., Mezhfaznaya tenziometriya (Interfacial Tensiometry), St. Petersburg: Khimiya, 1994.

  55. Loglio, G., Pandolfini, P., Miller, R., Makievski, A.V., Ravera, F., Ferrari, M., Liggieri, L., Novel Methods to Study Interfacial Layers, Amsterdam: Elsevier, 2001.

    Google Scholar 

  56. Zholob, S.A., Makievski, A.V., Miller, R., and Fainerman, V.B., Adv. Colloid Interface Sci., 2007, vol. 322, p. 134.

    Google Scholar 

  57. Ravera, F., Liggieri, L., and Loglio, G., in Progress in Colloid and Interface Science, Miller, R. and Liggieri, L., Eds., Boca Raton: CRC, 2009, vol. 1, p. 137.

    Google Scholar 

  58. Zholob, S.A., Kovalchuk, V.I., Makievski, A.V., Kragel, J., Fainerman, V.B., and Miller, R., in Progress in Colloid and Interface Science, Miller, R. and Liggieri, L., Eds., Boca Raton: CRC, 2009, vol. 1, p. 77.

    Google Scholar 

  59. Cook, R.L. and Langford, C.H., in Understanding Humic Substances. Advanced Methods, Properties and Applications, Cihabbour, E.A. and Davies, G., Eds., Sawston: Woodhead, 1999, p. 31.

  60. Kleinhempel, D., Albrecht-Thaer-Arhiv, 1970, vol. 14, no. 1, p. 3.

    CAS  Google Scholar 

  61. Schnitzer, M. and Khan, S.U., Humic Substances in the Environment, New York: Marcel Dekker, 1972.

    Google Scholar 

  62. Orlov, D.S., Sorosovskii Obrazovat. Zh., 1997, no. 2, p. 56.

  63. Stevenson, F.J., Humus Chemistry. Genesis, Composition, Reactions, New York: Wiley, 1982.

    Google Scholar 

  64. Sein, L.T., Varnum, J.M., and Jansen, S.A., Environ. Sci. Technol., 1999, vol. 33, p. 546.

    CAS  Article  Google Scholar 

  65. Popov, A.I., Guminovye veshchestva: svoistva, stroenie, obrazovanie (Humic Substances: Properties, Structure, Formation), Ermakov, E.I., Ed., St. Petersburg: S.-Peterb. Univ., 2004.

    Google Scholar 

  66. Orsi, M., Chem. Biol. Technol. Agriculture, 2014, vol. 1, p. 10.

    Article  CAS  Google Scholar 

  67. Fainerman, V.B. and Miller, R., Colloid J., 2005, vol. 67, p. 393.

    CAS  Article  Google Scholar 

  68. Fainerman, V.B., Lucassen-Reynders, E.H., and Miller, R., Adv. Colloid Interface Sci., 2003, vol. 106, p. 237.

    CAS  PubMed  Article  Google Scholar 

  69. Pranzas, P.K., Willumeit, R., Gehrke, R., Thieme, J., and Knöchel, A., Anal. Bioanal. Chem., 2003, vol. 376, p. 618.

    CAS  PubMed  Article  Google Scholar 

  70. Shang, Ch. and Rice, J.A., J. Colloid Interface Sci., 2007, vol. 305, p. 57.

    CAS  PubMed  Article  Google Scholar 

  71. Ryabova, I.N. and Mustafina, G.A., Akulova 3.G., Satymbaeva A.S, Colloid J., 2009, vol. 71, p. 729.

    CAS  Article  Google Scholar 

  72. Parfenova, L.N., Trufanova, M.V., Selyanina, S.B., Bogolitsyn, K.G., Orlov, A.S., and Strigutskii, V.P., Fundam. Issled., 2014, vol. 12, p. 1411.

    Google Scholar 

  73. www.sinterface.com.

  74. Sivakova, L.G., Lesnikova, N.P., Kim, N.M., and Rotova, G.M., Khim. Tverd. Topl., 2011, no. 1, p. 3.

  75. Kawahigashi, M., Sumida, H., and Yamamoto, K., J. Colloid Interface Sci., 2005, vol. 284, p. 463.

    CAS  PubMed  Article  Google Scholar 

  76. Visser, S.A., Plant Soil, 1985, vol. 87, p. 209.

    Article  Google Scholar 

  77. Lucassen-Reynders, E.H., Fainerman, V.B., and Miller, R., J. Phys. Chem. B, 2004, vol. 108, p. 9173.

    CAS  Article  Google Scholar 

  78. Ward, A.F.H. and Tordai, L., J. Chem. Phys., 1946, vol. 14, p. 543.

    Article  Google Scholar 

  79. Sherwood, T., Pigford, R., and Wilkie, C.R., Mass Transfer, New York: McGraw-Hill, 1975.

    Google Scholar 

  80. Cornel, P.K., Summers, R.S., and Roberts, P.V., J. Colloid Interface Sci., 1986, vol. 110, p. 149.

    CAS  Article  Google Scholar 

  81. Lead, J.R., Wilkinson, K.J., Starchev, K., Canonica, S., and Buffle, J., Environ. Sci. Technol., 2000, vol. 34, p. 1365.

    CAS  Article  Google Scholar 

  82. Otto, W.H., Britten, D.J., and Larive, C.K., J. Colloid Interface Sci., 2003, vol. 261, p. 508.

    CAS  PubMed  Article  Google Scholar 

  83. Miller, R., Fainerman, V.B., Aksenenko, E.V., Leser, M.E., and Michel, M., Langmuir, 2004, vol. 20, p. 771.

    CAS  PubMed  Article  Google Scholar 

  84. Khil’ko, S.L., Kotenko, A.A., Grebenyuk, S.A., Zarechnaya, O.M., and Mikhailov, V.A., Colloid J., 2019, vol. 81, p. 277.

    Article  Google Scholar 

  85. Fainerman, V.B., Usp. Khim., 1985, vol. 54, p. 1613.

    Article  Google Scholar 

  86. Fainerman, V.B., Zh. Fiz. Khim., 1990, vol. 64, p. 1611.

    CAS  Google Scholar 

  87. Wustneck, R., Fainerman, V.B., Aksenenko, E.V., Kotsmar, Cs., Pradines, V., and Miller, R., Colloids Surf. A, 2012, vol. 404, p. 17.

    Article  CAS  Google Scholar 

  88. Dan, A., Wustneck, R., Kragel, J., Aksenenko, E.V., Fainerman, V.B., and Miller, R., Food Hydrocolloids, 2014, vol. 34, p. 193.

    CAS  Article  Google Scholar 

  89. Miller, R., Aksenenko, E.V., Zinkovych, I.I., and Fainerman, V.B., Adv. Colloid Interface Sci., 2015, vol. 222, p. 509.

    CAS  PubMed  Article  Google Scholar 

  90. Pezennec, S., Gauthier, F., Alonso, C., Graner, F., Croguennec, T., Brule, G., and Renault, A., Food Hydrocolloids, 2000, vol. 14, p. 463.

    CAS  Article  Google Scholar 

  91. Noskov, B.A., Latnikova, A.V., Lin, S.-Y., Loglio, G., and Miller, R., J. Phys. Chem. C, 2007, vol. 111, p. 16 895.

    Article  CAS  Google Scholar 

  92. Babak, V.G. and Desbrieres, J., Colloid Polym. Sci., 2006, vol. 284, p. 745.

    CAS  Article  Google Scholar 

  93. Desbrieres, J. and Babak, V.G., Ross. Khim. Zh., 2008, vol. 52, no. 1, p. 75.

    CAS  Google Scholar 

  94. Shirshova, L.T., Gilichinskii, D.A., Ostroumova, N.V., and Ermolaev, A.M., Kriosfera Zemli, 2017, vol. 21, no. 2, p. 70.

    Google Scholar 

  95. Naidja, A., Huang, P.M., Anderson, D.W., and Kessel, C.V., Appl. Spectrosc., 2002, vol. 56, p. 318.

    CAS  Article  Google Scholar 

  96. Chen, J., Gu, B., LeBoeuf, E.J., Pan, H., and Dai, S., Chemosphere, 2002, vol. 48, p. 59.

    CAS  PubMed  Article  Google Scholar 

  97. Silva, R.R., Lucena, G.N., De Freitas, G.A., and Matos, A.T., J. Sci. Commun., 2018, vol. 9, p. 264.

    Google Scholar 

  98. Khil’ko, S.L., Kovtun, A.I., and Rybachenko, V.I., Khi-m. Tverd. Topl., 2011, no. 5, p. 50.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Khil’ko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khil’ko, S.L., Rogatko, M.I., Makarova, R.A. et al. Tensiometric and Rheological Characteristics of Fractions of Humic and Hymatomelanic Acids. Colloid J 81, 779–789 (2019). https://doi.org/10.1134/S1061933X2001007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X2001007X