Skip to main content
Log in

Specific Features of the Rheological Behavior of a Protic Oligomeric Ionic Liquid of Cationic Type with Basic Sites of Two Types in the Region of the Solid–Liquid Transition

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The structure and rheological behavior of a reactive oligomeric ionic liquid (OIL) have been studied. The OIL has a linear structure and contains ionic fragments of two types at both ends of oligo(ethylene oxide) chain. The ionic fragments are represented by secondary amino groups and nitrogen-containing heterocycles protonated with ethane sulfonic acid. The results obtained using rotational rheometry in different dynamic regimes indicate that, in the linear region of deformation at temperatures T < 20°C, this OIL exhibits the behavior of an elastic solidlike body. The components of the complex shear modulus (G ' ~ 107 Pa and G '' ~ 106 Pa) are independent of frequency ω and temperature. At the same time, its complex dynamic viscosity is independent of temperature and decreases with an increase in ω (in logarithmic coordinates, the dependence is linear and has a slope close to unity, which is a formal sign of the existence of a yield stress). At T ≤ 20°C in the nonlinear region of periodic deformation, a crossover is observed in the amplitude dependences of G ' and G '', which indicates that the critical shear stress is reached. As a result, the OIL passes into the liquid state (G '' > G '). The boundary, which is located at nearly 30°C, is characterized by equality between G ' and G '' in a wide range of strain amplitudes. The structural transformations induced by thermal and mechanical energies have been explained using a hypothesis of the existence of micellar structures and a “normal micelle–reverse micelle” transition in the OIL, as well as changes in micelle shapes. The analysis of the temperature dependences for the viscoelastic characteristics and scattered light intensity, as well as the data of DSC and optical microscopy, has led to the hypothesis that at, T = 21–28°C, the OIL may occur in an ordered state similar to the liquid-crystalline one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ionic Liquids: Theory, Properties, New Approaches, Kokorin, A., Ed., Croatia: In Tech, 2011.

  2. Tarasova, N.P., Smetannikov, Yu.V., and Zanin, A.A., Usp. Khim., 2010, vol. 79, p. 516.

    Google Scholar 

  3. Zherenkova, L.V. and Komarov, P.V., Polym. Sci., Ser. A, 2014, vol. 56, p. 383.

    Article  CAS  Google Scholar 

  4. Smirnova, N.A., Usp. Khim., 2005, vol. 74, p. 138.

    Article  Google Scholar 

  5. Rusanov, A.I., Mitselloobrazovanie v rastvorakh po-verkhnostno-aktivnykh veshchestv (Micellization in Surfactant Solutions), St. Petersburg: Khimiya, 1992.

  6. Rusanov, A.I., Colloid J., 2014, vol. 76, p. 121.

    Article  CAS  Google Scholar 

  7. Rusanov, A.I., Shchekin, A.K., and Kuni, F.M., Colloid J., 2009, vol. 71, p. 816.

    Article  CAS  Google Scholar 

  8. Rusanov A.I., Shchekin A.K., and Kuni F.M., Colloid J., 2009, vol. 71, p. 826.

    Article  CAS  Google Scholar 

  9. Kuznetsov, V.S., Blinov, A.P., Usol’tseva, N.V., and Anan’eva, G.A., Colloid J., 2007, vol. 69, p. 627.

    Article  CAS  Google Scholar 

  10. Kuznetsov, V.S., Usol’tseva, N.V., Zherdev, V.P., and Bykova, V.V., Colloid J., 2009, vol. 71, p. 784.

    Article  CAS  Google Scholar 

  11. Kuznetsov, V.S., Usol’tseva, N.V., Zherdev, V.P., and Bykova, V.V., Colloid J., 2010, vol. 72, p. 216.

    Article  CAS  Google Scholar 

  12. Safonova, E.A., Alexeeva, M.V., and Smirnova, N.A., Colloid J., 2009, vol. 71, p. 717.

    Article  CAS  Google Scholar 

  13. Maeda, H., J. Phys. Chem. B, 1997, vol. 101, p. 7378.

    Article  CAS  Google Scholar 

  14. Ikeda, S., Tsunoda, M., and Maeda, H., J. Colloid Interface Sci., 1979, vol. 70, p. 448.

    Article  CAS  Google Scholar 

  15. Kaimoto, H., Shoho, K., Sasaki, S., and Maeda, H., J. Phys. Chem., 1994, vol. 98, p. 10243.

    Article  CAS  Google Scholar 

  16. Goossens, K., Lava, K., Bielawski, C.W., and Binnemans, K., Chem. Rev., 2016, vol. 116, p. 4643.

    Article  CAS  Google Scholar 

  17. Binnemans, K., Chem. Rev., 2005, vol. 105, p. 4148.

    Article  CAS  Google Scholar 

  18. Godovskii, Yu.K. and Papkov, V.S., in Zhidkokristallicheskie polimery (Liquid Crystal Polymers), Plate, N.A., Ed., Moscow: Khimiya, 1988.

  19. Pebalk, D.A., Barmatov, E.B., and Shibaev, V.P., Usp. Khim., 2005, vol. 74, p. 610.

    Article  Google Scholar 

  20. Mezhikovskii, S.M., Arinshtein, A.E., and Deber-deev, R.Yu., Oligomernoe sostoyanie veshchestva (Oligomer State of Matter), Moscow: Nauka, 2005.

  21. Shevchenko, V.V., Stryutsky, A.V., Klymenko, N.S., Gumenna, M.A., Fomenko, A.A., Bliznyuk, V.N., Trachevsky, V.V., Davydenko, V.V., and Tsukruk, V.V., Polymer, 2014, vol. 55, p. 3349.

    Article  CAS  Google Scholar 

  22. Shevchenko, V.V., Stryutsky, A.V., Klymenko, N.S., Gumennaya, M.A., Fomenko, A.A., Trachevsky, V.V., Davydenko, V.V., Bliznyuk, V.N., and Dorokhin, A.V., Polym. Sci., Ser. B, 2014, vol. 56, p. 583.

    Article  CAS  Google Scholar 

  23. Xu, W., Ledin, P.A., Shevchenko, V.V., and Tsukruk, V.V., ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 12570.

    Article  CAS  Google Scholar 

  24. Shevchenko, V.V., Gumennaya, M.A., Stryutskii, A.V., Klimenko, N.S., Trachevskii, V.V., Klepko, V.V., and Davydenko, V.V., Polym. Sci., Ser. B, 2018, vol. 60, p. 598.

    Article  CAS  Google Scholar 

  25. Greaves, T.L. and Drummond, C.J., Chem. Rev., 2015, vol. 115, p. 11379.

    Article  CAS  Google Scholar 

  26. Hayes, R., Warr, G.G., and Atkin, R., Chem. Rev., 2015, vol. 115, p. 6357.

    Article  CAS  Google Scholar 

  27. Yuan, J., Meccerreyes, D., and Antonietti, M., Prog. Polym. Sci., 2013, vol. 38, p. 1009.

    Article  CAS  Google Scholar 

  28. Shaplov, A.S., Ponkratov, D.O., Vlasov, P.S., Lozinskaya, E.I., Komarova, L.I., Malyshkina, I.A., Vidal, F., Nguyen, G.T.M., Armand, M., Wandrey, C., and Vygodskii, Ya.S., Polym. Sci., Ser. B, 2013, vol. 55, p. 122.

    Article  CAS  Google Scholar 

  29. Shaplov, A.S., Ponkratov, D.O., and Vygodskii, Ya.S., Polym. Sci., Ser. B, 2016, vol. 58, p. 73.

    Article  CAS  Google Scholar 

  30. Malkin, A.Ya., Semakov, A.V., and Kulichikhin, V.G., Polym. Sci., Ser. A, 2010, vol. 52, p. 1083.

    Article  Google Scholar 

  31. Zapol’skii, A.K. and Baran, A.A., Koagulyanty i flokulyanty v protsessakh ochistki vody (Coagulants and Flocculants in Water Treatment Processes), Leningrad: Khimiya, 1987.

  32. Geller, B.E., Geller, A.A., and Chertulov, V.G., Prakticheskoe rukovodstvo po fizikokhimii voloknoobrazuyushchikh polimerov (A Practical Guide on Physical Chemistry of Fiber-Forming Polymers), Moscow: Khimiya, 1996.

  33. Shevchenko, V.V., Gumenna, M.A., Korolovych, V.F., Stryutsky, A.V., Trachevsky, V.V., Hrebnov, O., Klepko, V.V., Klymenko, N.S., Shumsky, V.F., Davyden-ko, V.V., and Ledin, P.A., J. Mol. Liq., 2017, vol. 235, p. 68.

    Article  CAS  Google Scholar 

  34. Masalova, I., Taylor, M., Kharatiyan, E., and Malkin, A.Ya., J. Rheol. (NY), 2005, vol. 49, p. 839.

    Article  CAS  Google Scholar 

  35. Malkin, A.Ya. and Isaev, A.I., Reologiya: kontseptsii, metody, prilozheniya (Rheology: Concepts, Methods, Applications), St. Petersburg: Professiya, 2010.

  36. Reich, S. and Cohen, Y., J. Polym. Sci., Part B: Polym. Phys., 1981, vol. 19, p. 1255.

    CAS  Google Scholar 

  37. Il’in, S.O., Spiridonova, V.M., Savel’eva, V.S., Ovchinnikov, M.M., Khizhnyak, S.D., Frenkin, E.I., Pakhomov, P.M., and Malkin, A.Ya., Colloid J., 2011, vol. 73, p. 688.

    Article  Google Scholar 

  38. Ilyin, S., Roumyantseva, T., Spiridonova, V., Semakov, A., Frenkin, E., Malkin, A., and Kulichikhin, V., Soft Matter, 2011, vol. 7, p. 9090.

    Article  CAS  Google Scholar 

  39. Sun, L., Morales-Collazo, O., Xia, H., and Brennecke, J.F., J. Phys. Chem. B, 2015, vol. 119, p. 15030.

    Article  CAS  Google Scholar 

  40. Sun, L., Morales-Collazo, O., Xia, H., and Brennecke, J.F., J. Phys. Chem. B, 2016, vol. 120, p. 5767.

    Article  CAS  Google Scholar 

  41. Pulst, M., Samiullah, M.H., Baumeister, U., Prehm, M., Balko, J., Thurn-Albrecht, T., Busse, K., Golitsyn, Y., Reichert, D., and Kressler, J., Macromolecules, 2016, vol. 49, p. 6609.

    Article  CAS  Google Scholar 

  42. Masalova, I., Malkin, A.Ya., and Foudazi, R., Appl. Rheol., 2008, vol. 18, p. 44790.

    Google Scholar 

  43. Nguyen, Q.D. and Boger, D.V., Rheol. Acta, 1985, vol. 24, p. 427.

    Article  CAS  Google Scholar 

  44. Mewis, J., J. Non-Newtonian Fluid Mech., 1979, vol. 6, p. 1.

    Article  CAS  Google Scholar 

  45. Papkov, S.P. and Kulichikhin, V.G., Zhidkokristallicheskoe sostoyanie polimerov (Liquid Crystalline State of Polymers), Moscow: Khimiya, 1977.

  46. Kulichikhin, V.G., in Zhidkokristallicheskie polimery (Liquid Crystal Polymers), Plate, N.A., Ed., Moscow: Khimiya, 1988, p. 331.

  47. Raghavan, S.R. and Khan, S.A., J. Rheol. (NY), 1995, vol. 39, p. 1311.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.G. Kulichikhin, corresponding member of the Russian Academy of Sciences, for valuable remarks and useful discussion of the obtained results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Shumskii.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumskii, V.F., Shevchenko, V.V., Gumennaya, M.A. et al. Specific Features of the Rheological Behavior of a Protic Oligomeric Ionic Liquid of Cationic Type with Basic Sites of Two Types in the Region of the Solid–Liquid Transition. Colloid J 81, 804–816 (2019). https://doi.org/10.1134/S1061933X19050132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X19050132

Navigation