Skip to main content
Log in

On the Localization of CMC and Maximum Concentration of Surface-Active Ions According to the Theory of Micellar Solutions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The micellization theory that I previously developed on the basis of the definition of critical micelle concentration (CMC) using the constant of the law of mass action as applied to ionic surfactants (Colloid. J., 2016, vol. 78, p. 669) has been supplemented and refined. The problem concerning the relative positions of the maximum in the surface-active ion concentration and CMC as functions of aggregation number has been solved in the general form. It has been shown that the curves of these functions may intersect. On the side of smaller aggregation numbers relative to the intersection point, the maximum lies above the CMC, while, at larger aggregation numbers, it is, on the contrary, located below the CMC in the concentration axis. The influence of the type of an electrolyte on this effect has been studied by the example of an ionic surfactant. If the charge of a counterion is higher than the charge of a surface-active ion, the maximum is located above the CMC; otherwise, it is below the CMC. At the same time, the question of the formulation of the law of mass action for ionic surfactants with multivalent ions has been answered. It has been shown that the definition of CMC via the constant of the law of mass action must, in this case, comprise stoichiometric coefficients. The theory has been formulated under the condition of a constant aggregation number in the vicinity of CMC. In addition, an ideal behavior of a mixture of monomers and micelles is assumed, which is inherent in ionic surfactants with rather low CMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Murrey, R.C. and Hartley, G.S., Trans. Faraday Soc., 1935, vol. 31, p. 183.

    Article  Google Scholar 

  2. Malik, W., Ahmad, S.I., and Jain, A.K., Kolloid. Z., 1967, vol. 218, p. 155.

    Article  CAS  Google Scholar 

  3. Kaibara, K., Nakahara, T., Satake, I., and Matuura, R., Mem. Fac. Sci. Kyushu Univ., Ser. C, 1970, vol. 7, p. 1.

    CAS  Google Scholar 

  4. Birch, B.J. and Clarke, D.E., Anal. Chim. Acta, 1972, vol. 61, p. 159.

    Article  CAS  Google Scholar 

  5. Shirahama, K., Bull. Chem. Soc. Jpn., 1974, vol. 47, p. 3165.

    Article  CAS  Google Scholar 

  6. Sasaki, T., Hattori, M., Sasaki, J., and Nukina, K., Bull. Chem. Soc. Jpn., 1975, vol. 48, p. 1397.

    Article  CAS  Google Scholar 

  7. Aniansson, E.A.G., Wall, S.N., Almgren, M., Hoffmann, H., Kielmann, I., Ulbricht, W., Zana, R., Lang, J., and Tondre, C., J. Phys. Chem., 1976, vol. 80, p. 905.

    Article  CAS  Google Scholar 

  8. Cutler, S.G., Meares, P., and Hall, D.G., J. Chem. Soc., Faraday Trans. 1, 1978, vol. 74, p. 1758.

    Article  CAS  Google Scholar 

  9. Lindman, B., Puyal, M.C., Kamenka, N., Brun, B., and Gunnarsson, G., J. Phys. Chem., 1982, vol. 86, p. 1702.

    Article  CAS  Google Scholar 

  10. Gunnarsson, G., Jönsson, B., and Wennerström, H., J. Phys. Chem., 1980, vol. 84, p. 3114.

    Article  CAS  Google Scholar 

  11. Rusanov, A.I., Mitselloobrazovanie v rastvorakh po-verkhnostno-aktivnykh veshchestv (Micellization in Surfactant Solutions), St. Petersburg: Khimiya, 1992.

    Google Scholar 

  12. Rusanov, A.I., Adv. Colloid Interface Sci., 1993, vol. 45, p. 1.

    Article  CAS  Google Scholar 

  13. Rusanov, A.I., Langmuir, 2014, vol. 30, p. 14443.

    Article  CAS  PubMed  Google Scholar 

  14. Rusanov, A.I., Colloid J., 2016, vol. 78, p. 669.

    Article  CAS  Google Scholar 

  15. Lindman, B. and Wennerström, H., Top. Curr. Chem., 1980, vol. 87, p. 1.

    Article  CAS  PubMed  Google Scholar 

  16. Eicke, H.-F., Top. Curr. Chem., 1980, vol. 87, p. 85.

    Article  CAS  PubMed  Google Scholar 

  17. Rusanov, A.I., Colloids Surf. A, 2016, vol. 506, p. 162.

    Article  CAS  Google Scholar 

  18. Robinson, R.A. and Stokes, R.H., Electrolyte Solutions, New York: Academic, 1959.

    Google Scholar 

  19. Reekmans, S., Bernik, D., Gehlenj, M., Van Stam, J., Van der Auweraer, M., and De Schryver, F.C., Langmuir, 1993, vol. 9, p. 2289.

    Article  CAS  Google Scholar 

  20. Hansson, P., Jonsson, B., Strom, C., and Soder-man, O., J. Phys. Chem. B, 2000, vol. 104, p. 3496.

    Article  CAS  Google Scholar 

  21. Fafati, A.A., Gharibi, H., Iloukhani, H., and Safdari, L., Phys. Chem. Liq., 2003, vol. 41, p. 227.

    Article  CAS  Google Scholar 

  22. Anachkov, S.E., Danov, K.D., Basheva, E.S., Kralchevsky, P.A., and Ananthapadmanabhan, K.P., Adv. Colloid Interface Sci., 2012, vols. 183–184, p. 55.

  23. Pisarcik, M., Devinsky, F., and Pupak, M., Open Chem., 2015, vol. 13, p. 922.

    Article  CAS  Google Scholar 

  24. Rusanov, A.I., Colloids Surf. A, 2018, vol. 551, p. 158.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 14-13-00112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Rusanov.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rusanov, A.I. On the Localization of CMC and Maximum Concentration of Surface-Active Ions According to the Theory of Micellar Solutions. Colloid J 80, 691–697 (2018). https://doi.org/10.1134/S1061933X18060121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X18060121

Navigation