Skip to main content
Log in

Molecular Mechanisms of the Effect of Water on CO2/CH4 Mixture Adsorption in Slitlike Carbon Pores

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The grand canonical ensemble Monte Carlo method has been used to study adsorption of carbon dioxide, methane, and their mixtures with different compositions in slitlike carbon pores at a temperature of 318 K and pressures below 60 atm. The data obtained have been used to show the effect of fixed amounts of pre-adsorbed water (19, 37, and 70 vol %) on the adsorption capacity and selectivity of carbon micro- and mesopores. The presence of water reduces the adsorption capacity throughout the studied pressure range upon adsorption of gaseous mixtures containing less than 50% CO2, as well as in narrow micropores (with widths of 8−12 Å). Upon adsorption of mixtures with CO2 contents higher than 50%, the adsorption capacity of pores with low water contents appears, in some region of the isotherm, to be higher than that in dry pores. In the case of wide pores (16 and 20 Å), this region is located at low and moderate pressures, while for mesopores it is located at high pressures. The analysis of the calculated data has shown that the molecular mechanism of the influence of preadsorbed water on the adsorption capacity is based on the competition between the volume accessible for adsorption (decreases the capacity) and the strength of the interaction between carbon dioxide molecules and water molecules (increases the capacity). Therewith, the larger the surface area of the water–gas contact, the stronger the H2O–CO2 interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazzotti, M., Pini, R., and Storti, G., J. Supercrit. Fluids, 2009, vol. 47, p. 619.

    Article  CAS  Google Scholar 

  2. Day, S., Sakurovs, R., and Weir, S., Int. J. Coal Geol., 2008, vol. 74, p. 203.

    Article  CAS  Google Scholar 

  3. Busch, A. and Gensterblum, Y., Int. J. Coal Geol., 2011, vol. 87, p. 49.

    Article  CAS  Google Scholar 

  4. Busch, A., Gensterblum, Y., and Krooss, B.M., Fuel, 2014, vol. 115, p. 581.

    Article  CAS  Google Scholar 

  5. Mohammad, S.A., Chen, J.S., Fitzgerald, J.E., Robinson, R.L., Jr., and Gasem, K.A.M., Energy Fuels, 2009, vol. 23, p. 1107.

    Article  CAS  Google Scholar 

  6. Merkel, A., Gensterblum, Y., Krooss, B.M., and Amann, A., Int. J. Coal. Geol., 2015, vols. 150–151, p. 181.

    Article  CAS  Google Scholar 

  7. Gubbins, K.E. and Moore, J.D., Ind. Eng. Chem. Res., 2010, vol. 49, p. 3026.

    Article  CAS  Google Scholar 

  8. Gubbins, K.E., Liu, Y.C., Moore, J.D., and Palmer, J.C., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 58.

    Article  CAS  PubMed  Google Scholar 

  9. Billemont, P., Coasne, B., and De Weireld, G., Langmuir, 2011, vol. 27, p. 1015.

    Article  CAS  PubMed  Google Scholar 

  10. Sizova, A.A., Sizov, V.V., and Brodskaya, E.N., Colloid J., 2015, vol. 77, p. 82.

    Article  CAS  Google Scholar 

  11. Liu, L. and Bhatia, S.K., J. Phys. Chem. C, 2013, vol. 117, p. 13479.

    Article  CAS  Google Scholar 

  12. Liu, L., Nicholson, D., and Bhatia, S.K., J. Phys. Chem. C, 2015, vol. 119, p. 407.

    Article  CAS  Google Scholar 

  13. Sizova, A.A., Sizov, V.V., and Brodskaya, E.N., Colloids Surf. A, 2015, vol. 474, p. 76.

    Article  CAS  Google Scholar 

  14. Jorgensen, W.L., Maxwell, D.S., and Tirado-Rives, J., J. Am. Chem. Soc., 1996, vol. 118, p. 11225.

    Article  CAS  Google Scholar 

  15. Potoff, J.J. and Siepmann, J.I., AIChE J., 2001, vol. 47, p. 1676.

    Article  CAS  Google Scholar 

  16. Abascal, J.L.F. and Vega, C., J. Chem. Phys., 2005, vol. 123.

  17. Jorgensen, W.L., Madura, J.D., and Swenson, C.J., J. Am. Chem. Soc., 1984, vol. 106, p. 6638.

    Article  CAS  Google Scholar 

  18. Jorgensen, W.L., J. Phys. Chem., 1986, vol. 90, p. 1276.

    Article  CAS  Google Scholar 

  19. Sizov, V.V., Piotrovskaya, E.M., and Brodskaya, E.N., Russ. J. Phys. Chem., 2007, vol. 81, p. 1285.

    Article  CAS  Google Scholar 

  20. Steele, W.A., The Interaction of Gases with Solid Surfaces, Oxford: Pergamon, 1974.

    Google Scholar 

  21. Sudibandriyo, M., Pan, Z., Fitzgerald, J.E., Robinson, R.L., Jr., and Gasem, K.A.M., Langmuir, 2003, vol. 19, p. 5323.

    Article  CAS  Google Scholar 

  22. Morlay, C. and Joly, J.-P., J. Por. Mater., 2010, vol. 17, p. 535.

    Article  CAS  Google Scholar 

  23. Kurniawan, Y., Bhatia, S.K., and Rudolph, V., AIChE J., 2006, vol. 52, p. 957.

    Article  CAS  Google Scholar 

  24. Palmer, J.C., Moore, J.D., Roussel, T.J., Brennan, J.K., and Gubbins, K.E., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 3985.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, L., Nicholson, D., and Bhatia, S.K., Chem. Eng. Sci., 2015, vol. 121, p. 268.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sizova.

Additional information

Original Russian Text © A.A. Sizova, V.V. Sizov, E.N. Brodskaya, 2018, published in Kolloidnyi Zhurnal, 2018, Vol. 80, No. 4, pp. 458–465.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sizova, A.A., Sizov, V.V. & Brodskaya, E.N. Molecular Mechanisms of the Effect of Water on CO2/CH4 Mixture Adsorption in Slitlike Carbon Pores. Colloid J 80, 439–446 (2018). https://doi.org/10.1134/S1061933X18040117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X18040117

Navigation