Advertisement

Colloid Journal

, Volume 80, Issue 2, pp 107–140 | Cite as

Kinetics of Aggregation and Relaxation in Micellar Surfactant Solutions

  • A. K. Shchekin
  • L. Ts. Adzhemyan
  • I. A. Babintsev
  • N. A. Volkov
Review

Abstract

Theoretical results published in the last 17 years on the kinetics of aggregation and relaxation in micellar surfactant solutions have been reviewed. The results obtained by the analytical and direct numerical solution of the Becker–Döring kinetic equations and the Smoluchowski generalized equations, which describe different possible mechanisms of aggregation and relaxation on all time scales from ultrafast relaxation while reaching the quasi-equilibrium in the region of subcritical molecular aggregates to the last stage of slow relaxation of micelles to the final aggregated state, have been considered in detail. The droplet model and the model linear with respect to aggregation numbers have been used for the work of aggregation to describe the dynamics of the rearrangement of micellar systems consisting of only spherical, only cylindrical, and coexisting spherical and cylindrical aggregates, with the dynamics being both linear and nonlinear with respect to deviations from equilibrium. The results of molecular simulation of the rearrangement kinetics of micellar systems subjected to initial disturbance have been reviewed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kahlweit, M. and Teubner, M., Adv. Colloid Interface Sci., 1980, vol. 13, p. 1.CrossRefGoogle Scholar
  2. 2.
    Nagarajan, R. and Ruckenstein, E., Langmuir, 1991, vol. 7, p. 2934.CrossRefGoogle Scholar
  3. 3.
    Nagarajan, R., Surfactant Sci. Ser., 1997, vol. 70, p. 1.Google Scholar
  4. 4.
    Nagarajan, R. and Ruckenstein, E., in Equations of State for Fluids and Fluid Mixtures, Sengers, J.V., Kayser, R.F., Peters, C.J., and White, H.J, Eds., Amsterdam: Elsevier, 2000, vol. 5, p. 589.CrossRefGoogle Scholar
  5. 5.
    Shchekin, A.K., Kuni, F.M., Grinin, A.P., and Rusanov, A.I., in Nucleation Theory and Application, Schmelzer, J.W.P., Ed., New York: Wiley, 2005, p. 312.Google Scholar
  6. 6.
    Kuni, F.M., Rusanov, A.I., Shchekin, A.K., and Grinin, A.P., Russ. J. Phys. Chem., 2005, vol. 79, p. 833.Google Scholar
  7. 7.
    Diamant, H. and Andelman, D., Curr. Opin. Colloid Interface Sci., 2016, vol. 22, p. 94.CrossRefGoogle Scholar
  8. 8.
    Tanford, C., The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Brisbane: Wiley, 1980.Google Scholar
  9. 9.
    Micellization, Solubilization, and Microemulsions, Mittal, K.L., Ed., New York: Plenum, 1977.Google Scholar
  10. 10.
    Zana, R., Surfactant Sci. Ser., 2005, vol. 125, p. 75.CrossRefGoogle Scholar
  11. 11.
    Surfactants and Interfacial Phenomena, Rosen, M.J. and Kunjappu, J.T., Eds., Hoboken: Wiley, 2012.Google Scholar
  12. 12.
    Rusanov, A.I. and Shchekin, A.K., Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv (Micellization in Surfactant Solutions), St. Petersburg: Lan’, 2016.Google Scholar
  13. 13.
    Aniansson, E.A.G. and Wall, S.N., J. Phys. Chem., 1974, vol. 78, p. 1024.CrossRefGoogle Scholar
  14. 14.
    Aniansson, E.A.G. and Wall, S.N., J. Phys. Chem., 1975, vol. 79, p. 857.CrossRefGoogle Scholar
  15. 15.
    Wall, S.N. and Aniansson, E.A.G., J. Phys. Chem., 1980, vol. 84, p. 727.CrossRefGoogle Scholar
  16. 16.
    Aniansson, E.A.G., Wall, S.N., Almgren, M., Hoffmann, H., Kielmann, I., Ulbricht, W., Zana, R., Lang, J., and Tondre, C., J. Phys. Chem., 1976, vol. 80, p. 905.CrossRefGoogle Scholar
  17. 17.
    Almgren, M., Aniansson, E.A.G., and Holmaker, K., Chem. Phys., 1977, vol. 19, p. 1.CrossRefGoogle Scholar
  18. 18.
    Kahlweit, M., Pure Appl. Chem., 1981, vol. 53, p. 2069.CrossRefGoogle Scholar
  19. 19.
    Becker, R. and Döring, W., Ann. Phys. (New York), 1935, vol. 24, p. 719.CrossRefGoogle Scholar
  20. 20.
    Ball, J.M. and Carr, J., J. Stat. Phys., 1990, vol. 61, p. 203.CrossRefGoogle Scholar
  21. 21.
    Rusanov, A.I., Kuni, F.M., and Shchekin, A.K., Colloid J., 2000, vol. 62, p. 167.Google Scholar
  22. 22.
    Kuni, F.M., Shchekin, A.K., Grinin, A.P., and Rusanov, A.I., Colloid J., 2000, vol. 62, p. 172.Google Scholar
  23. 23.
    Kuni, F.M., Grinin, A.P., Shchekin, A.K., and Rusanov, A.I., Colloid J., 2000, vol. 62, p. 451.Google Scholar
  24. 24.
    Kuni, F.M., Grinin, A.P., Shchekin, A.K., and Rusanov, A.I., Colloid J., 2001, vol. 63, p. 197.CrossRefGoogle Scholar
  25. 25.
    Kuni, F.M., Rusanov, A.I., Grinin, A.P., and Shchekin, A.K., Colloid J., 2001, vol. 63, p. 723.CrossRefGoogle Scholar
  26. 26.
    Grinin, A.P. and Greben’kov, D.S., Colloid J., 2003, vol. 65, p. 552.CrossRefGoogle Scholar
  27. 27.
    Mohan, G. and Kopelevich, D.I., J. Chem. Phys., 2008, vol. 128, p. 044905.CrossRefGoogle Scholar
  28. 28.
    Hadgiivanova, R. and Diamant, H., J. Chem. Phys., 2009, vol. 130, p. 114901.CrossRefGoogle Scholar
  29. 29.
    Hadgiivanova, R., Diamant, H., and Andelman, D., J. Phys. Chem. B, 2011, vol. 115, p. 7268.CrossRefGoogle Scholar
  30. 30.
    Starov, V., Zhdanov, V., and Kovalchuk, N.M., Colloids Surf. A, 2010, vol. 354, p. 268.CrossRefGoogle Scholar
  31. 31.
    Shchekin, A.K., Kuni, F.M., and Shakhnov, K.S., Colloid J., 2008, vol. 70, p. 244.CrossRefGoogle Scholar
  32. 32.
    Danov, K.D., Kralchevsky, P.A., Denkov, N.D., and Ananthapadmanabhan, K.P., Adv. Colloid Interface Sci., 2006, vol. 119, p. 1.CrossRefGoogle Scholar
  33. 33.
    Kshevetskiy, M.S. and Shchekin, A.K., J. Chem. Phys., 2009, vol. 131, p. 074114.CrossRefGoogle Scholar
  34. 34.
    Kuni, F.M., Shchekin, A.K., Rusanov, A.I., and Grinin, A.P., Colloid J., 2004, vol. 66, p. 174.CrossRefGoogle Scholar
  35. 35.
    Shchekin, A.K., Kuni, F.M., Grinin, A.P., and Rusanov, A.I., Colloid J., 2006, vol. 68, p. 248.CrossRefGoogle Scholar
  36. 36.
    Kuni, F.M., Shchekin, A.K., Rusanov, A.I., and Grinin, A.P., Colloid J., 2005, vol. 67, p. 32.CrossRefGoogle Scholar
  37. 37.
    Kuni, F.M., Shchekin, A.K., Rusanov, A.I., and Grinin, A.P., Colloid J., 2005, vol. 67, p. 41.CrossRefGoogle Scholar
  38. 38.
    Kuni, F.M., Shchekin, A.K., Rusanov, A.I., and Grinin, A.P., Langmuir, 2006, vol. 22, p. 1534.CrossRefGoogle Scholar
  39. 39.
    Kuni, F.M., Shchekin, A.K., Rusanov, A.I., and Grinin, A.P., Colloid J., 2007, vol. 69, p. 319.CrossRefGoogle Scholar
  40. 40.
    Kuni, F.M., Shchekin, A.K., Rusanov, A.I., and Grinin, A.P., Colloid J., 2005, vol. 67, p. 146.CrossRefGoogle Scholar
  41. 41.
    Shchekin, A.K., Kuni, F.M., Grinin, A.P., and Rusanov, A.I., Russ. J. Phys. Chem., 2008, vol. 82, p. 101.CrossRefGoogle Scholar
  42. 42.
    Kshevetskii, M.S., Shchekin, A.K., and Kuni, F.M., Colloid J., 2008, vol. 70, p. 455.CrossRefGoogle Scholar
  43. 43.
    Bergström, L.M., Curr. Opin. Colloid Interface Sci., 2016, vol. 22, p. 46.CrossRefGoogle Scholar
  44. 44.
    Shchekin, A.K., Rusanov, A.I., and Kuni, F.M., Chem. Lett., 2012, vol. 41, p. 1081.CrossRefGoogle Scholar
  45. 45.
    Babintsev, I.A., Adzhemyan, L.Ts., and Shchekin, A.K., J. Chem. Phys., 2012, vol. 137, p. 044902.CrossRefGoogle Scholar
  46. 46.
    Babintsev, I.A., Adzhemyan, L.T., and Shchekin, A.K., Soft Matter, 2014, vol. 10, p. 2619.CrossRefGoogle Scholar
  47. 47.
    Babintsev, I.A., Adzhemyan, L.Ts., and Shchekin, A.K., J. Chem. Phys., 2014, vol. 141, p. 064901.CrossRefGoogle Scholar
  48. 48.
    Shchekin, A.K., Babintsev, I.A., Adzhemyan, L.Ts., and Volkov, N.A., RSC Adv., 2014, vol. 4, p. 51722.CrossRefGoogle Scholar
  49. 49.
    Waton, G., J. Phys. Chem. B, 1997, vol. 101, p. 9727.CrossRefGoogle Scholar
  50. 50.
    Shchekin, A.K., Kshevetskii, M.S., and Pelevina, O.S., Colloid J., 2011, vol. 73, p. 406.CrossRefGoogle Scholar
  51. 51.
    Griffiths, I.M., Breward, C.J.W., Colegate, D.M., Dellar, P.J., Howell, P.D., and Bain, C.D., Soft Matter, 2013, vol. 9, p. 853.CrossRefGoogle Scholar
  52. 52.
    Zakharov, A.I., Adzhemyan, L.Ts., and Shchekin, A.K., J. Chem. Phys., 2015, vol. 143, p. 124902.CrossRefGoogle Scholar
  53. 53.
    Shchekin, A.K., Babintsev, I.A., and Adzhemyan, L.Ts., J. Chem. Phys., 2016, vol. 145, p. 174105.CrossRefGoogle Scholar
  54. 54.
    Mavelli, F. and Maestro, M., J. Chem. Phys., 1999, vol. 111, p. 4310.CrossRefGoogle Scholar
  55. 55.
    Marrink, S.-J., Tieleman, D.P., and Mark, A.E., J. Phys. Chem. B, 2000, vol. 104, p. 12165.CrossRefGoogle Scholar
  56. 56.
    Shelley, J.C. and Shelley, M.Y., Curr. Opin. Colloid Interface Sci., 2000, vol. 5, p. 101.CrossRefGoogle Scholar
  57. 57.
    Brodskaya, E.N., Colloid J., 2012, vol. 74, p. 154.CrossRefGoogle Scholar
  58. 58.
    Gillespie, D.T., J. Phys. Chem., 1977, vol. 81, p. 2340.CrossRefGoogle Scholar
  59. 59.
    Rusanov, A.I., Shchekin, A.K., and Volkov, N.V., Usp. Khim., 2017, vol. 86, p. 567.CrossRefGoogle Scholar
  60. 60.
    Friedlander, S.K., Smoke, Dust, and Hase. Fundamentals of Aerosol Dynamics, Oxford: Oxford Univ. Press, 2000, p. 190.Google Scholar
  61. 61.
    Dubovskii, P.B. and Stewart, I.W., Math. Methods Appl. Sci., 1996, vol. 19, p. 571.CrossRefGoogle Scholar
  62. 62.
    Wattis, J.A.D., Phys. D (Amsterdam), 2006, vol. 222, p. 1.CrossRefGoogle Scholar
  63. 63.
    Piskunov, V.N., Dinamika aerozolei (Aerosol Dynamics), Moscow: Fizmatlit, 2010.Google Scholar
  64. 64.
    Adzhemyan, L.Ts., Shchekin, A.K., and Babintsev, I.A., Colloid J., 2017, vol. 79, p. 295.CrossRefGoogle Scholar
  65. 65.
    von Smoluchowski, M., Z. Phys. Chem., 1917, vol. 92, p. 129.Google Scholar
  66. 66.
    Pool, R. and Bolhuis, P.G., Phys. Rev. Lett., 2006, vol. 97, p. 018302.CrossRefGoogle Scholar
  67. 67.
    Pool, R. and Bolhuis, P.G., J. Chem. Phys., 2007, vol. 126, p. 244703.CrossRefGoogle Scholar
  68. 68.
    Babintsev, I.A., Adzhemyan, L.Ts., and Shchekin, A.K., Phys. A (Amsterdam), 2017, vol. 479, p. 551.CrossRefGoogle Scholar
  69. 69.
    Rusanov, A.I., Grinin, A.P., Kuni, F.M., and Shchekin, A.K., Russ. J. Gen Chem., 2002, vol. 72, p. 607.CrossRefGoogle Scholar
  70. 70.
    Rusanov, A.I., Kuni, F.M., Grinin, A.P., and Shchekin, A.K., Colloid J., 2002, vol. 64, p. 605.CrossRefGoogle Scholar
  71. 71.
    Sammalkorpi, M., Karttunen, M., and Haataja, M., J. Am. Chem. Soc., 2008, vol. 130, p. 17977.CrossRefGoogle Scholar
  72. 72.
    Gao, J., Li, S., Zhang, X., and Wang, W., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 3219.CrossRefGoogle Scholar
  73. 73.
    Poghosyan, A.H., Arsenyan, L.H., and Shahinyan, A.A., Colloid Polym. Sci., 2014, vol. 292, p. 3147.CrossRefGoogle Scholar
  74. 74.
    Poghosyan, A.H., Arsenyan, L.H., and Shahinyan, A.A., J. Surfact. Deterg., 2015, vol. 18, p. 755.CrossRefGoogle Scholar
  75. 75.
    Rharbi, Y., Karrouch, M., and Richardson, P., Langmuir, 2014, vol. 30, p. 7947.CrossRefGoogle Scholar
  76. 76.
    Volkov, N.A., Divinskiy, B.B., Vorontsov-Velyaminov, P.N., and Shchekin, A.K., Colloids Surf. A, 2015, vol. 480, p. 165.CrossRefGoogle Scholar
  77. 77.
    Volkov, N.A., Tuzov, N.V., and Shchekin, A.K., Fluid Phase Equilibr., 2016, vol. 424, p. 114.CrossRefGoogle Scholar
  78. 78.
    Volkov, N.A., Shchekin, A.K., Tuzov, N.V., Lebedeva, T.S., and Kazantseva, M.A., J. Mol. Liq., 2017, vol. 236, p. 414.CrossRefGoogle Scholar
  79. 79.
    Volkov, N.A., Tuzov, N.V., and Shchekin, A.K., Colloid J., 2017, vol. 79, p. 181.CrossRefGoogle Scholar
  80. 80.
    Chun, B.J., Choi, J.I., and Jang, S.S., Colloids Surf. A, 2015, vol. 474, p. 36.CrossRefGoogle Scholar
  81. 81.
    Aoun, B., Sharma, V.K., Pellegrini, E., Mitra, S., Johnson, M., and Mukhopadhyay, R., J. Phys. Chem. B, 2015, vol. 119, p. 5079.CrossRefGoogle Scholar
  82. 82.
    Yuan, F., Wang, S., and Larson, R.G., Langmuir, 2015, vol. 31, p. 1336.CrossRefGoogle Scholar
  83. 83.
    Jusufi, A., Hynninen, A.-P., and Panagiotopoulos, A.Z., J. Phys. Chem. B, 2008, vol. 112, p. 13783.CrossRefGoogle Scholar
  84. 84.
    Jusufi, A., Mol. Phys., 2013, vol. 111, p. 3182.CrossRefGoogle Scholar
  85. 85.
    Panagiotopoulos, A.Z., Langmuir, 2015, vol. 31, p. 3283.CrossRefGoogle Scholar
  86. 86.
    Brocos, P., Mendoza-Espinosa, P., Castillo, R., Mas-Oliva, J., and Pineiro, A., Soft Matter, 2012, vol. 8, p. 9005.CrossRefGoogle Scholar
  87. 87.
    Burov, S.V., Vanin, A.A., and Brodskaya, E.N., J. Phys. Chem. B, 2009, vol. 113, p. 10715.CrossRefGoogle Scholar
  88. 88.
    Burov, S.V. and Shchekin, A.K., J. Chem. Phys., 2011, vol. 133, p. 244109.CrossRefGoogle Scholar
  89. 89.
    Arai, N., Yasuoka, K., and Masubuchi, Y., J. Chem. Phys., 2007, vol. 126, p. 244905.CrossRefGoogle Scholar
  90. 90.
    Verde, A.V. and Frenkel, D., Soft Matter, 2016, vol. 12, p. 5172.CrossRefGoogle Scholar
  91. 91.
    Li, Z. and Dormidontova, E.E., Macromolecules, 2010, vol. 43, p. 3521.CrossRefGoogle Scholar
  92. 92.
    Heinzelmann, G., Seide, P., Jr., and Figueiredo, W., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2015, vol. 92, p. 052305.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. K. Shchekin
    • 1
  • L. Ts. Adzhemyan
    • 1
  • I. A. Babintsev
    • 1
  • N. A. Volkov
    • 1
  1. 1.Faculty of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations