Colloid Journal

, Volume 80, Issue 2, pp 199–206 | Cite as

A Cell Model of a Membrane with Allowance for Variable Viscosity of Liquid in Porous Shells of Spherical Grains

  • P. O. Ryzhikh
  • A. N. Filippov


The Happel–Brenner cell method has been employed to calculate the hydrodynamic permeability of a porous medium (membrane) composed of a set of partially porous spherical particles with solid impermeable cores. This representation is used to describe the globular structure of membranes containing soluble grains. The apparent viscosity of a liquid is suggested to increase as a power function of the depth of the porous shell from the viscosity of the pure liquid at the porous medium–liquid shell interface to some larger value at the boundary with the impermeable core. All known boundary conditions used for the cell surface, i.e., those proposed by Happel, Kuwabara, Kvashnin, and Cunningham, have been considered. Important limiting cases have been analyzed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics, Leyden: Noordhoff, 1965, 1973.Google Scholar
  2. 2.
    Churaev, N., Sergeeva, I., and Derjaguin, B., J. Colloid Interface Sci., 1981, vol. 84, p. 451.CrossRefGoogle Scholar
  3. 3.
    Varoqui, R. and Dejardin, P., J. Chem. Phys., 1977, vol. 66, p. 4395.CrossRefGoogle Scholar
  4. 4.
    Churaev, N.V., Fizikokhimiya protsessov massoperenosa v poristykh telakh (Physical Chemistry of Mass Transfer in Porous Bodies), Moscow: Khimiya, 1990.Google Scholar
  5. 5.
    Hiller, J. and Hoffman, H., J. Comp. Physiol., 1953, vol. 42, p. 203.Google Scholar
  6. 6.
    Parsons, D. and Subjeck, J., Biochem. Biophys. Acta, 1972, vol. 55, p. 440.Google Scholar
  7. 7.
    Masliyah, J., Neale, G., Malysa, K., and Van de Ven, T., Chem. Eng. Sci., 1987, vol. 42, p. 245.CrossRefGoogle Scholar
  8. 8.
    Garvey, M., Tadros, Th., and Vincent, B., J. Colloid Interface Sci., 1975, vol. 55, p. 440.CrossRefGoogle Scholar
  9. 9.
    Pefferkorn, E., Dejardin, P., and Varoqui, R., J. Colloid Interface Sci., 1975, vol. 63, p. 353.CrossRefGoogle Scholar
  10. 10.
    Vasin, S.I., Kharitonova, T.V., and Filippov, A.N., Colloid J., 2011, vol. 73, p. 158.CrossRefGoogle Scholar
  11. 11.
    Perepelkin, P.V., Starov, V.M., and Filippov, A.N., Kolloidn. Zh., 1992, vol. 54, p. 139.Google Scholar
  12. 12.
    Filippov, A.N., Vasin, S.I., and Starov, V.M., Colloids Surf. A, 2006, vols. 282—283, p. 272.CrossRefGoogle Scholar
  13. 13.
    Vasin, S.I. and Filippov, A.N., Colloid J., 2004, vol. 66, p. 266.CrossRefGoogle Scholar
  14. 14.
    Brinkman, H.C., Appl. Sci. Res. London A, 1947, vol. 1, p. 27.CrossRefGoogle Scholar
  15. 15.
    Ochoa-Tapia, J.A. and Whitaker, S., Int. J. Heat Mass Transfer, 1995, vol. 38, p. 2635.CrossRefGoogle Scholar
  16. 16.
    Vasin, S.I. and Filippov, A.N., Colloid J., 2009, vol. 71, p. 31.CrossRefGoogle Scholar
  17. 17.
    Yadav, P.K., Tiwari, A., Deo, S., Filippov, A., and Vasin, S., Acta Mech., 2010, vol. 215, p. 193.CrossRefGoogle Scholar
  18. 18.
    Deo, S., Filippov, A., Tiwari, A., Vasin, S., and Starov, V., Adv. Colloid Interface Sci., 2011, vol. 164, p. 21.CrossRefGoogle Scholar
  19. 19.
    Kuwabara, S., J. Phys. Soc. Jpn., 1959, vol. 14, p. 527.CrossRefGoogle Scholar
  20. 20.
    Kvashnin, A.G., Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1979, no. 4, p. 154.Google Scholar
  21. 21.
    Cunningham, E., Proc. R. Soc. London A, 1910, vol. 83, p. 357.CrossRefGoogle Scholar
  22. 22.
    De Groot, S. and Mazur, P., Nonequilibrium Thermodynamics, Amsterdam: North-Holland, 1962.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Gubkin Russian State University of Oil and GasMoscowRussia

Personalised recommendations