Colloid Journal

, Volume 80, Issue 2, pp 189–198 | Cite as

Electrophoretic Mobility of a Polyelectrolyte Capsule

  • V. I. Roldughin
  • A. N. Filippov
  • T. V. Kharitonova
Article

Abstract

The electrophoretic motion of a polyelectrolyte capsule has been considered in a uniform electric field. The capsule carries a uniformly distributed charge and is permeable to ions of different natures. An electrolyte identical to a dispersion medium is located inside the capsule. The flow in the porous layer of the capsule has been described by the Brinkman equations taking into account the effect of electrostatic forces. The distribution of ions in the vicinity of the capsule has been determined, and its electrophoretic mobility has been found in a linear approximation. The mobility of the capsule has been studied as depending on its geometric characteristics, permeability, and charge density. In particular, a complex extremal character of variations in the mobility as depending on the solid phase fraction in the capsule has been revealed at different ratios between the thicknesses of the electrical double layer and the Brinkman filtration layer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dukhin, S.S. and Derjaguin, B.V., Elektroforez (Electrophoresis), Moscow: Nauka, 1976.Google Scholar
  2. 2.
    Ohno, K., Tachikawa, K., and Manz, A., Electrophoresis, 2008, vol. 29, p. 4443.CrossRefGoogle Scholar
  3. 3.
    Roldughin, V.I., Usp. Khim., 2012, vol. 81, p. 875.CrossRefGoogle Scholar
  4. 4.
    Ohshima, H., J. Colloid Interface Sci., 1994, vol. 163, p. 474.CrossRefGoogle Scholar
  5. 5.
    Keh, H.J. and Jan, J.S., J. Colloid Interface Sci., 1996, vol. 183, p. 458.CrossRefGoogle Scholar
  6. 6.
    Chen, P.J. and Keh, H.J., J. Colloid Interface Sci., 2005, vol. 286, p. 774.CrossRefGoogle Scholar
  7. 7.
    Yariv, E. and Brenner, H., J. Fluid Mech., 2003, vol. 484, p. 85.CrossRefGoogle Scholar
  8. 8.
    Squires, T.M. and Bazant, M.Z., J. Fluid Mech., 2006, vol. 560, p. 65.CrossRefGoogle Scholar
  9. 9.
    Khair, A.S. and Squires, T.M., Phys. Fluids, 2009, vol. 21, p. 042001.CrossRefGoogle Scholar
  10. 10.
    Yariv, E. and Miloh, T., J. Fluid Mech., 2008, vol. 595, p. 163.CrossRefGoogle Scholar
  11. 11.
    Bazant, M.Z. and Squires, T.M., Curr. Opin. Colloid Interface Sci., 2010, vol. 15, p. 203.CrossRefGoogle Scholar
  12. 12.
    Daghighi, Y. and Dongqing, L., Microfluid. Nanofluid, 2010, vol. 9, p. 593.CrossRefGoogle Scholar
  13. 13.
    Zhao, H., Phys. Fluids, 2010, vol. 22, p. 072004.CrossRefGoogle Scholar
  14. 14.
    Boymelgreen, A.M. and Miloh, T., Phys. Fluids, 2011, vol. 23, p. 072007.CrossRefGoogle Scholar
  15. 15.
    Bédard, M.F., De Geest, B.G., Skirtach, A.G., Möhwald, H., and Sukhorukov, G.B., Adv. Colloid Interface Sci., 2010, vol. 158, p. 2.CrossRefGoogle Scholar
  16. 16.
    Tabeling, P., Phys. Fluids, 2010, vol. 22, p. 021302.CrossRefGoogle Scholar
  17. 17.
    Gopmandal Partha, P., Bhattacharyya, S., and Ohshima, H., Colloid Polym. Sci., 2016, vol. 294, p. 727.CrossRefGoogle Scholar
  18. 18.
    Vasin, S.I. and Kharitonova, T.V., Colloid J., 2011, vol. 73, p. 18.CrossRefGoogle Scholar
  19. 19.
    Vasin, S.I. and Kharitonova, T.V., Colloid J., 2011, vol. 73, p. 297.CrossRefGoogle Scholar
  20. 20.
    Vasin, S.I. and Kharitonova, T.V., Colloid J., 2013, vol. 75, p. 247.CrossRefGoogle Scholar
  21. 21.
    Li, W.C. and Keh, H.J., Colloids Surf. A, 2016, vol. 497, p. 154.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Roldughin
    • 1
  • A. N. Filippov
    • 2
  • T. V. Kharitonova
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.National Research University Gubkin Russian State University of Oil and GasMoscowRussia

Personalised recommendations