Advertisement

Colloid Journal

, Volume 79, Issue 5, pp 588–595 | Cite as

Structure and rheology of aqueous poly(vinyl acetate) dispersions modified with montmorillonite

  • V. A. GerasinEmail author
  • V. V. Kurenkov
  • O. V. Pashkov
  • S. O. Ilyin
Article
  • 62 Downloads

Abstract

It has been shown that the rheological properties and resistance to sedimentation of aqueous poly(vinyl acetate) (PVA) latexes, which are used for the preparation of coatings and adhesives, can be controlled by adding sodium montmorillonite (MMT). The adding of MMT initiates gelation of the PVA dispersions, which manifests itself as the appearance of the yield stress, thixotropy, and viscoelasticity. X-ray diffraction analysis of the complex dispersions and films based on them has shown a transition from exfoliated to intercalated clay tactoids with an increase in their content. In view of the complex composition of the PVA latexes, which contain a stabilizer (poly(vinyl alcohol)) and a plasticizer (dibutyl phthalate), the components that are predominantly intercalated into the MMT interplanar space, have been identified. The highest yield stress and rigidity of the structural network, which arises in a sample as a result of the joint coagulation of PVA and MMT particles, are observed upon the incorporation of 1.2 wt % MMT into the latex.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Handbook of Industrial Water Soluble Polymers, Williams, P.A., Ed., Oxford: Blackwell, 2007.Google Scholar
  2. 2.
    Paints, Coatings and Solvents, Freitag, W. and Stoye, D., Eds., Weinheim: Wiley-VCH, 2008.Google Scholar
  3. 3.
    Peruzzo, P.J., Bonnefond, A., Reyes, Y., et al., Int. J. Adhes. Adhes., 2014, vol. 48, p. 295.CrossRefGoogle Scholar
  4. 4.
    Kaboorani, A. and Riedl, B., Composites, 2011, vol. 42, p. 1031.CrossRefGoogle Scholar
  5. 5.
    Gerasin, V.A., Antipov, E.M., Karbushev, V.V., et al., Usp. Khim., 2013, vol. 82, p. 303.CrossRefGoogle Scholar
  6. 6.
    Azeez, A.A., Rhee, K.Y., Park, S.J., and Hui, D., Composites, 2013, vol. 45, p. 308.CrossRefGoogle Scholar
  7. 7.
    Pavlidou, S. and Papaspyrides, C.D., Prog. Polym. Sci., 2008, vol. 33, p. 1119.CrossRefGoogle Scholar
  8. 8.
    Ilyin, S.O., Brantseva, T.V., Gorbunova, I.Y., et al., Int. J. Adhes. Adhes., 2011, vol. 61, p. 127.CrossRefGoogle Scholar
  9. 9.
    Brantseva, T., Antonov, S., Kostyuk, A., et al., Eur. Polym. J., 2016, vol. 76, p. 228.CrossRefGoogle Scholar
  10. 10.
    Kurenkov, V.V., Gerasin, V.A., Korolev, Yu.M., et al., Plast. Massy, 2015, nos. 7–8, p. 53.Google Scholar
  11. 11.
    Fogelström, L., Malmström, E., Johansson, M., and Hult, A., ACS Appl. Mater. Interfaces, 2010, vol. 2, p. 1679.CrossRefGoogle Scholar
  12. 12.
    Verma, G., Kaushik, A., and Ghosh, A.K., Prog. Org. Coat., 2013, vol. 76, p. 1046.CrossRefGoogle Scholar
  13. 13.
    Handbook of Clay Science, Bergaya, F. and Lagaly, G., Eds., Amsterdam: Elsevier, 2013, vol. 5.Google Scholar
  14. 14.
    Khailen, V., Dobavki dlya vodorastvorimykh lakokrasochnykh materialov (Dopants for Water-Soluble Paint and Varnish Materials), Moscow: Peint-Media, 2011.Google Scholar
  15. 15.
    Ilyin, S.O., Kulichikhin, V.G., and Malkin, A.Y., Colloid Polym. Sci., 2015, vol. 293, p. 1647.CrossRefGoogle Scholar
  16. 16.
    Il’in, S.O., Pupchenkov, G.S., Krasheninnikov, A.I., et al., Colloid J., 2013, vol. 75, p. 267.CrossRefGoogle Scholar
  17. 17.
    Moya, R., Rodríguez-Zúñiga, A., Vega-Baudrit, J., and Álvarez, V., Int. J. Adhes. Adhes., 2015, vol. 59, p. 62.CrossRefGoogle Scholar
  18. 18.
    Lai, M.C., Chang, K.C., Yeh, J.M., et al., Eur. Polym. J., 2007, vol. 43, p. 4219.CrossRefGoogle Scholar
  19. 19.
    Yeh, J.M., Yao, C.T., Hsieh, C.F., et al., Eur. Polym. J., 2008, vol. 44, p. 3046.CrossRefGoogle Scholar
  20. 20.
    Corobea, M.C., Uricanu, V., Donescu, D., et al., e-Polymers, 2006, vol. 6, p. 767.CrossRefGoogle Scholar
  21. 21.
    Teixeira, R.F., McKenzie, H.S., Boyd, A.A., and Bon, S.A., Macromolecules, 2011, vol. 44, p. 7415.CrossRefGoogle Scholar
  22. 22.
    Bourgeat-Lami, E., Guimaraes, T.R., Pereira, A.M.C., et al., Macromol. Rapid Commun., 2010, vol. 31, p. 1874.CrossRefGoogle Scholar
  23. 23.
    Binks, B.P. and Lumsdon, S.O., Langmuir, 2000, vol. 16, p. 8622.CrossRefGoogle Scholar
  24. 24.
    Chevalier, Y. and Bolzinger, M.A., Colloids Surf. A, 2013, vol. 439, p. 23.CrossRefGoogle Scholar
  25. 25.
    Stratigaki, M., Choudalakis, G., and Gotsis, A.D., J. Coat. Technol. Res., 2014, vol. 11, p. 899.CrossRefGoogle Scholar
  26. 26.
    Gordeeva, N.V., Tolmachev, I.A., Mashlyakovskii, L.N., and Vasil’ev, V.K., Izv. SPbGTI(TU), 2012, no. 14(40), p. 41.Google Scholar
  27. 27.
    Nobel, M.L., Picken, S.J., and Mendes, E., Prog. Org. Coat., 2007, vol. 58, p. 96.CrossRefGoogle Scholar
  28. 28.
    Adoor, S.G., Sairam, M., Manjeshwar, L.S., et al., J. Membr. Sci., 2006, vol. 285, p. 182.CrossRefGoogle Scholar
  29. 29.
    Chang, J.H., Jang, T.G., Ihn, K.J., et al., J. Appl. Polym. Sci., 2003, vol. 90, p. 3208.CrossRefGoogle Scholar
  30. 30.
    Ho, D.L., Briber, R.M., and Glinka, C.J., Chem. Mater., 2001, vol. 13, p. 1923.CrossRefGoogle Scholar
  31. 31.
    Corobea, M.C., Uricanu, V., Donescu, D., et al., Mater. Chem. Phys., 2007, vol. 103, p. 118.CrossRefGoogle Scholar
  32. 32.
    Ilyin, S.O., Arinina, M.P., Malkin, A.Ya., and Kulichikhin, V.G., Colloid J., 2016, vol. 78, p. 608.CrossRefGoogle Scholar
  33. 33.
    Khil’ko, S.L. and Titov, E.V., Colloid J., 2002, vol. 64, p. 631.CrossRefGoogle Scholar
  34. 34.
    Uriev, N.B., Colloid J., 2011, vol. 73, p. 104.CrossRefGoogle Scholar
  35. 35.
    Malkin, A., Ilyin, S., Semakov, A., and Kulichikhin, V., Soft Matter, 2012, vol. 8, p. 2607.CrossRefGoogle Scholar
  36. 36.
    Ngothai, Y. and Bhattacharya, S.N., Kolloidn. Zh., 1995, vol. 57, p. 220.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Gerasin
    • 1
    • 2
    Email author
  • V. V. Kurenkov
    • 1
  • O. V. Pashkov
    • 2
  • S. O. Ilyin
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of ScienceMoscowRussia
  2. 2.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations