Computer simulation of structuring in aqueous L-cysteine–silver-nitrate solutions under the action of initiating salt

Abstract

Structural transformations occurring in aqueous L-cysteine−silver-nitrate mixed solutions (CSSs) upon the addition of an initiating salt have been studied within the framework of mesoscopic simulation using the dissipative particle-dynamics method. Diffusion of silver mercaptide clusters is decelerated, and metastable chain aggregates thereof are formed in a narrow concentration range of the salt, probably due to the transition into a gel-like state. The results obtained are in qualitative agreement with the experimentally observed behavior of CSSs.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Brunsveld, L., Folmer, B.J.B., Meijer, E.W., and Sijbesma, R.P., Chem. Rev., 2001, vol. 101, p. 4071.

    CAS  Article  Google Scholar 

  2. 2.

    Estroff, L. and Hamilton, A.D., Chem. Rev., 2004, vol. 104, p. 1201.

    CAS  Article  Google Scholar 

  3. 3.

    Sangeetha, N.M. and Maitra, U., Chem. Soc. Rev., 2005, vol. 34, p. 821.

    CAS  Article  Google Scholar 

  4. 4.

    Peppas, N.A., Hilt, J.Z., Khademhosseini, A., and Langer, R., Adv. Mater. (Weinheim), 2006, vol. 18, p. 1345.

    CAS  Article  Google Scholar 

  5. 5.

    Serpe, M.J. and Craig, S.L., Langmuir, 2007, vol. 23, p. 1626.

    CAS  Article  Google Scholar 

  6. 6.

    Maity, G.C., J. Phys. Sci., 2007, vol. 11, p. 156.

    Google Scholar 

  7. 7.

    Loos, M., Feringa, B.L., and Esch, J.H., Eur. J. Org. Chem., 2005, vol. 2005, p. 3615.

    Article  Google Scholar 

  8. 8.

    Liu, K., Kang, Y., Wang, Z., and Zhang, X., Adv. Mater. (Weinheim), 2013, vol. 25, p. 5530.

    CAS  Article  Google Scholar 

  9. 9.

    Pakhomov, P.M., Ovchinnikov, M.M., Khizhnyak, S.D., Lavrienko, M.V., Nierling, W., and Lechner, M.D., Colloid J., 2004, vol. 66, p. 65.

    CAS  Article  Google Scholar 

  10. 10.

    Pakhomov, P.M., Ovchinnikov, M.M., Khizhnyak, S.D., Roshchina, O.A., and Komarov, P.V., Vysokomol. Soedin., Ser. A, 2011, vol. 53, p. 1574.

    Google Scholar 

  11. 11.

    Baranova, O.A., Kuz’min, N.I., Samsonova, T.I., Rebetskaya, I.S., Petrova, O.P., Pakhomov, P.M., Khizhnyak, S.D., Komarov, P.V., and Ovchinnikov, M.M., Khim. Volokna, 2011, no. 1, p. 74.

    Google Scholar 

  12. 12.

    Alekseev, V.G., Semenov, A.N., and Pakhomov, P.M., Russ. J. Inorg. Chem., 2012, vol. 57, p. 1041.

    CAS  Article  Google Scholar 

  13. 13.

    Komarov, P.V., Sannikov, I.P., Khizhnyak, S.D., Ovchinnikov, M.M., and Pakhomov, P.M., Nanotechnol. Russ., 2008, vol. 3, nos. 11–12, p. 716.

    Article  Google Scholar 

  14. 14.

    Komarov, P.V., Alekseev, V.G., Khizhnyak, S.D., Ovchinnikov, M.M., and Pakhomov, P.M., Nanotechnol. Russ., 2010, vol. 5, nos. 3–4, p. 165.

    Article  Google Scholar 

  15. 15.

    Komarov, P.V., Mikhailov, I.V., Alekseev, V.G., Khizhnyak, S.D., and Pakhomov, P.M., Colloid J., 2011, vol. 71, p. 482.

    Article  Google Scholar 

  16. 16.

    Komarov, P.V., Mikhailov, I.V., Alekseev, V.G., Khizhnyak, S.D., and Pakhomov, P.M., J. Struct. Chem., 2012, vol. 53, p. 988.

    CAS  Article  Google Scholar 

  17. 17.

    Ovchinnikov, M.M., Perevozova, T.V., Khizhnyak, S.D., and Pakhomov, P.M., in Fizikokhimiya polimerov (Physical Chemistry of Polymers), Tver: Izd. TGU, 2014, no. 20, p. 104.

    Google Scholar 

  18. 18.

    Mandal, S., Gole, A., Lala, N., Gonnade, R., Ganvir, V., and Sastry, M., Langmuir, 2001, vol. 17, p. 6262.

    CAS  Article  Google Scholar 

  19. 19.

    Petean, I., Tomoaia, G.H., Horovitz, O., Mocanu, A., and Tomoaia-Cotisel, M., J. Optoelectron. Adv. M, 2008, vol. 10, p. 2289.

    CAS  Google Scholar 

  20. 20.

    Baburkin, P.O., Komarov, P.V., Khizhnyak, S.D., and Pakhomov, P.M., Colloid J., 2015, vol. 77, p. 561.

    CAS  Article  Google Scholar 

  21. 21.

    Pattanayak, S.K. and Chowdhuri, S., J. Mol. Liq., 2012, vol. 172, p. 102.

    CAS  Article  Google Scholar 

  22. 22.

    Pattanayak, S.K. and Chowdhuri, S., J. Theor. Comput. Chem., 2012, vol. 11, p. 361.

    CAS  Article  Google Scholar 

  23. 23.

    Pattanayak, S.K. and Chowdhuri, S., Mol. Phys., 2013, vol. 111, p. 3297.

    CAS  Article  Google Scholar 

  24. 24.

    Manning, G.S., J. Chem. Phys., 1969, vol. 51, p. 924.

    CAS  Article  Google Scholar 

  25. 25.

    Koelman, J.M.V.A. and Hoogerbrugge, P.J., Europhys. Lett., 1993, vol. 21, p. 363.

    CAS  Article  Google Scholar 

  26. 26.

    Espanol, P. and Warren, P., Europhys. Lett., 1995, vol. 30, p. 191.

    CAS  Article  Google Scholar 

  27. 27.

    Groot, R.D. and Madden, T.J., J. Chem. Phys., 1997, vol. 107, p. 4423.

    CAS  Article  Google Scholar 

  28. 28.

    Groot, R.D. and Warren, P.B., J. Chem. Phys., 1998, vol. 108, p. 8713.

    CAS  Article  Google Scholar 

  29. 29.

    Becke, A.D., J. Chem. Phys., 1988, vol. 88, p. 2547.

    CAS  Article  Google Scholar 

  30. 30.

    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785.

    CAS  Article  Google Scholar 

  31. 31.

    Delley, B., J. Chem. Phys., 1990, vol. 92, p. 508.

    CAS  Article  Google Scholar 

  32. 32.

    Delley, B., J. Chem. Phys., 2000, vol. 113, p. 7756.

    CAS  Article  Google Scholar 

  33. 33.

    Shankar, R., Kolandaivel, P., and Senthilkumar, L., J. Phys. Org. Chem., 2011, vol. 24, p. 553.

    CAS  Article  Google Scholar 

  34. 34.

    Doi, M. and Edwards, S.F., The Theory of Polymer Dynamics, Oxford: Oxford Science, 1986.

    Google Scholar 

  35. 35.

    Miller-Chou, B.A. and Koenig, J.L., Prog. Polym. Sci., 2003, vol. 28, p. 1223.

    CAS  Article  Google Scholar 

  36. 36.

    Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford: Clarendon, 1987.

    Google Scholar 

  37. 37.

    Groot, R.D., J. Chem. Phys., 2001, vol. 118, p. 11265.

    Article  Google Scholar 

  38. 38.

    www.researchgate.net/project/DPDChem-Software.

  39. 39.

    Berezkin, A.V., Papadakis, C.M., and Potemkin, I.I., Macromolecules, 2016, vol. 49, p. 415.

    CAS  Article  Google Scholar 

  40. 40.

    Poon, W.C.K. and Haw, M.D., Adv. Colloid Interface Sci., 1997, vol. 73, p. 71.

    CAS  Article  Google Scholar 

  41. 41.

    Pedersen, J.S., Adv. Colloid Interface Sci., 1997, vol. 70, p. 171.

    CAS  Article  Google Scholar 

  42. 42.

    Mokshin, A.V., Zabegaev, R.M., and Khusnutdinoff, R.M., Phys. Solid State, 2011, vol. 53, p. 570.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. V. Komarov.

Additional information

Original Russian Text © P.O. Baburkin, P.V. Komarov, M.D. Malyshev, S.D. Khizhnyak, P.M. Pakhomov, 2017, published in Kolloidnyi Zhurnal, 2017, Vol. 79, No. 5, pp. 534–543.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baburkin, P.O., Komarov, P.V., Malyshev, M.D. et al. Computer simulation of structuring in aqueous L-cysteine–silver-nitrate solutions under the action of initiating salt. Colloid J 79, 577–587 (2017). https://doi.org/10.1134/S1061933X17050039

Download citation