Advertisement

Colloid Journal

, Volume 79, Issue 4, pp 515–525 | Cite as

Mechanisms of depinning accompanying evaporation of colloidal dispersion droplets

  • S. P. Molchanov
  • V. I. RoldughinEmail author
  • I. A. Chernova-Kharaeva
  • I. N. Senchikhin
Article

Abstract

Experiments have been performed to clarify the mechanism of depinning, i.e., the onset of the movement of the menisci of evaporating dispersion droplets under the conditions of the formation of ringshaped deposits (the coffee-ring effect). The influence of the nature and concentration of dispersed particles on depinning has been studied. It has been shown that there are three main effects responsible for depinning. The first effect is due to the hysteresis of droplet contact angle, the second one results from the influence of the particles on the surface tension of a dispersion, and the third effect is caused by the formation of a dense gel in the meniscus region. A relation has been revealed between the mechanisms being realized and scenarios of droplet evaporation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Molchanov, S.P., Roldughin, V.I., and Chernova-Kharaeva, I.A., Colloid J., 2015, vol. 77, p. 761.CrossRefGoogle Scholar
  2. 2.
    Molchanov, S.P., Roldughin, V.I., and Chernova-Kharaeva, I.A., Colloid J., 2015, vol. 77, p. 770.CrossRefGoogle Scholar
  3. 3.
    Molchanov, S.P., Roldughin, V.I., Chernova-Kharaeva, I.A., and Yurasik, G.A., Colloid J., 2016, vol. 78, p. 633.CrossRefGoogle Scholar
  4. 4.
    Molchanov, S.P., Roldughin, V.I., Chernova-Kharaeva, I.A., and Yurasik, G.A., Kolloidn. Zh., 2017, vol. 79, p. 182.Google Scholar
  5. 5.
    Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., and Witten, T.A., Nature (London), 1997, vol. 389, p. 827.CrossRefGoogle Scholar
  6. 6.
    Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., and Witten, T.A., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 62, p. 756.CrossRefGoogle Scholar
  7. 7.
    Bhardwaj, R., Fang, X., Somasundaran, P., and Attinger, D., Langmuir, 2010, vol. 26, p. 7833.CrossRefGoogle Scholar
  8. 8.
    Dugyala, V.R. and Basavaraj, M.G., Langmuir, 2014, vol. 30, p. 8680.CrossRefGoogle Scholar
  9. 9.
    Yunker, P.J., Still, T., Lohr, M.A., and Yodh, A.G., Nature (London), 2011, vol. 476, p. 308.CrossRefGoogle Scholar
  10. 10.
    Shen, X., Ho, C.-M., and Wong, T.-S., J. Phys. Chem. B, 2010, vol. 114, p. 5269.CrossRefGoogle Scholar
  11. 11.
    Li, Y.-F., Sheng, Y.-J., and Tsao, H.-K., Langmuir, 2013, vol. 29, p. 7802.CrossRefGoogle Scholar
  12. 12.
    Vysotskii, V.V., Roldughin, V.I., Uryupina, O.Ya., and Zaitseva, A.V., Colloid J., 2011, vol. 73, p. 176.CrossRefGoogle Scholar
  13. 13.
    Vysotskii, V.V., Uryupina, O.Ya., Senchikhin, I.N., and Roldughin, V.I., Colloid J., 2013, vol. 75, p. 142.CrossRefGoogle Scholar
  14. 14.
    Vysotskii, V.V., Uryupina, O.Ya., Senchikhin, I.N., and Roldughin, V.I., Colloid J., 2013, vol. 75, p. 634.CrossRefGoogle Scholar
  15. 15.
    Vysotskii, V.V., Roldughin, V.I., Uryupina, O.Ya., Senchikhin, I.N., and Zaitseva, A.V., Colloid J., 2014, vol. 76, p. 531.CrossRefGoogle Scholar
  16. 16.
    Nazarov, V.G. and Stolyarov, V.P., Colloid J., 2016, vol. 78, p. 75.CrossRefGoogle Scholar
  17. 17.
    Huang, W., Cui, L., Li, J., Luo, C., Zhang, J., Luan, S., Ding, Y., and Han, Y., Colloid Polym. Sci., 2006, vol. 284, p. 366.CrossRefGoogle Scholar
  18. 18.
    Sefiane, K. and Bennacer, R., J. Fluid Mech., 2011, vol. 667, p. 260.CrossRefGoogle Scholar
  19. 19.
    David, S., Sefiane, K., and Tadrist, L., Colloids Surf. A, 2007, vol. 298, p. 108.CrossRefGoogle Scholar
  20. 20.
    Vysotskii, V.V., Roldughin, V.I., Uryupina, O.Ya., Senchikhin, I.N., and Zaitseva, A.V., Colloid J., 2015, vol. 77, p. 431.CrossRefGoogle Scholar
  21. 21.
    Roldughin, V.I., Usp. Khim., 2004, vol. 73, p. 123.CrossRefGoogle Scholar
  22. 22.
    Terekhin, V.V., Dement’eva, O.V., and Rudoy, V.M., Usp. Khim., 2011, vol. 80, p. 477.CrossRefGoogle Scholar
  23. 23.
    Lebedev-Stepanov, P.V., Kadushnikov, R.M., Molchanov, S.P., Ivanov, A.A., Mitrokhin, V.P., Vlasov, K.O., Rubin, N.I., Yurasik, G.A., Nazarov, V.G., and Alfimov, M.V., Nanotechnol. Russ., 2013, vol. 8, nos. 3–4, p. 137.CrossRefGoogle Scholar
  24. 24.
    Vysotskii, V.V., Roldughin, V.I., and Uryupina, O.Ya., Colloid J., 2004, vol. 66, p. 777.CrossRefGoogle Scholar
  25. 25.
    Bhardwaj, R., Fang, X., and Attinger, D., New J. Phys., 2009, vol. 11, p. 075020.CrossRefGoogle Scholar
  26. 26.
    Men'shikova, A.Yu., Shabsel’s, B.M., Evseeva, T.G., Shevchenko, N.N., and Bilibin, A.Yu., Russ. J. Appl. Chem., 2005, vol. 78, p. 159.CrossRefGoogle Scholar
  27. 27.
    Stöber, W., Fink, A., and Bohn, E., J. Colloid Interface Sci., 1968, vol. 26, p. 62.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. P. Molchanov
    • 1
    • 3
  • V. I. Roldughin
    • 2
    Email author
  • I. A. Chernova-Kharaeva
    • 3
  • I. N. Senchikhin
    • 2
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.A.N. Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  3. 3.Photochemistry CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations