Skip to main content
Log in

Structural and dynamic features of water and amorphous ice

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Structural properties and microscopic dynamics of water and amorphous ice have been studied by the molecular dynamics method. It has been found that the distribution function of the tetrahedricity parameter exhibits two ranges, which correspond to local molecular formations with low and high degrees of tetrahedricity. The number of molecular clusters with a high degree of tetrahedricity grows as temperature decreases. It has been shown that the vibrational density of states comprises two vibrational modes. A low-frequency vibrational mode strongly depends on pressure and is almost independent of temperature, while a high-frequency mode is relevant to the pressure-independent heat motion of molecules. The geometric criterion of hydrogen bonds has been used to evaluate their continuous lifetime as depending on temperature for molecules with different coordination values. The average lifetime of a hydrogen bond substantially depends on the coordination of molecules, with the temperature dependence of the coordination obeying the activation dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheligovskaya, E.A. and Malenkov, G.G., Usp. Khim., 2006, vol. 75, p. 64.

    Article  Google Scholar 

  2. Salzmann, Ch.G., Radaelli, P.G., Slater, B., and Finney, J.L., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 18468.

    Article  CAS  Google Scholar 

  3. Angell, C.A., Annu. Rev. Phys. Chem., 2004, vol. 55, p. 559.

    Article  Google Scholar 

  4. Khusnutdinoff, R.M. and Mokshin, A.V., J. Non-Cryst. Solids, 2011, vol. 357, p. 1677.

    Article  CAS  Google Scholar 

  5. Khusnutdinoff, R.M. and Mokshin, A.V., Physica A (Amsterdam), 2012, vol. 391, p. 2842.

    Article  CAS  Google Scholar 

  6. Kumar, P., Wikfeldt, K.Th., Schlesinger, D., Pettersson, L.G.M., and Stanley, H.E., Sci. Rep., 2013, vol. 3, p. 1980.

    Google Scholar 

  7. Paciaroni, A., Bizzarri, A.R., and Cannistraro, S., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, vol. 60, p. R2476.

    Article  CAS  Google Scholar 

  8. Li, J.C. and Kolesnikov, A.I., Physica B (Amsterdam), 2002, vols. 316–317, p. 493.

    Article  Google Scholar 

  9. Mishima, O., Calvert, L.D., and Whalley, E., Nature (London), 1985, vol. 314, p. 76.

    Article  CAS  Google Scholar 

  10. Malenkov, G.G., Zh. Strukt. Khim., 2006, vol. 47, p. S5.

    Google Scholar 

  11. Falenty, A., Hansen, Th.C., and Kuhs, W.F., Nature (London), 2014, vol. 516, p. 231.

    Article  CAS  Google Scholar 

  12. Huang, Y., Zhu, Ch., Wang, L., Cao, X., Su, Y., Jiang, X., Meng, Sh., Zhao, J., and Cheng Zeng, X., Sci. Adv., 2016, vol. 2, p. 1.

    Google Scholar 

  13. Loerting, Th. and Giovambattista, N., J. Phys.: Condens. Matter, 2006, vol. 18, p. R919.

    CAS  Google Scholar 

  14. Mishima, O., P Jpn. Acad. B-Phys., 2010, vol. 86, p. 165.

    Article  CAS  Google Scholar 

  15. Mishima, O. and Stanley, H.E., Nature (London), 1998, vol. 396, p. 329.

    Article  CAS  Google Scholar 

  16. Abascal, J.L.F. and Vega, C., J. Chem. Phys., 2005, vol. 123, p. 234505.

    Article  CAS  Google Scholar 

  17. Pi, H.L., Aragones, J.L., Vega, C., Noya, E.G., Abascal, J.L.F., Gonzalez, M.A., and McBride, C., Mol. Phys., 2009, vol. 107, p. 365.

    Article  CAS  Google Scholar 

  18. Khusnutdinov, R.M. and Mokshin, A.V., Bull. Russ. Acad. Sci.: Phys., 2010, vol. 74, p. 640.

    Article  Google Scholar 

  19. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford: Clarendon, 1987.

    Google Scholar 

  20. Mallamace, F., Corsaro, C., and Stanley, H.E., PNAS, 2013, vol. 110, p. 4899.

    Article  CAS  Google Scholar 

  21. Khusnutdinoff, R.M., Colloid J., 2013, vol. 75, p. 726.

    Article  CAS  Google Scholar 

  22. Khusnutdinoff, R.M., Colloid J., 2016, vol. 78, p. 225.

    Article  CAS  Google Scholar 

  23. Mokshin, A.V., Yulmetyev, R.M., Khusnutdinov, R.M., and Hänggi, P., Phys. Solid State, 2006, vol. 48, p. 1760.

    Article  CAS  Google Scholar 

  24. Sarkisov, G.N., Usp. Fiz. Nauk, 2002, vol. 172, p. 647.

    Article  Google Scholar 

  25. Mokshin, A.V., Zabegaev, S.O., and Khusnutdinov, R.M., Phys. Solid State, 2011, vol. 53, p. 570.

    Article  CAS  Google Scholar 

  26. Wendt, H.R. and Abraham, F.F., Phys. Rev. Lett., 1978, vol. 41, p. 1244.

    Article  CAS  Google Scholar 

  27. Debenedetti, P.G. and Stanley, H.E., Phys. Today, 2003, vol. 56, p. 40.

    Article  CAS  Google Scholar 

  28. Mokshin, A.V., Yulmetyev, R.M., Khusnutdinoff, R.M., and Hänggi, P., J. Phys.: Condens. Matter, 2007, vol. 19, p. 046209.

    Google Scholar 

  29. Medvedev, N.N., Voloshin, V.P., and Naberukhin, Yu.I., Zh. Strukt. Khim., 1989, vol. 30, p. 98.

    CAS  Google Scholar 

  30. Naberukhin, Yu.I. and Voloshin, V.P., Zh. Strukt. Khim., 2006, vol. 47, p. S129.

    Google Scholar 

  31. Pereyra, R.G., Bermudez di Lorenzo, A.J., Malaspina, D.C., and Carignano, M.A., Chem. Phys. Lett., 2012, vol. 538, p. 35.

    Article  CAS  Google Scholar 

  32. Stillinger, F.H. and Rahman, A., J. Chem. Phys., 1972, vol. 57, p. 1281.

    Article  CAS  Google Scholar 

  33. Swiatla-Wojcik, D., Chem. Phys., 2007, vol. 342, p. 260.

    Article  CAS  Google Scholar 

  34. Kumar, R., Schmidt, J.R., and Skinner, J.L., J. Chem. Phys., 2007, vol. 126, p. 204107.

    Article  CAS  Google Scholar 

  35. Rapaport, D.C., Mol. Phys., 1983, vol. 50, p. 1151.

    Article  CAS  Google Scholar 

  36. Kalinichev, A.G. and Bass, J.D., Chem. Phys. Lett., 1994, vol. 231, p. 301.

    Article  CAS  Google Scholar 

  37. Malenkov, G.G. and Tytik, D.L., Izv. Akad. Nauk, Ser. Fiz., 2000, vol. 64, p. 1469.

    CAS  Google Scholar 

  38. Starr, F.W., Nielsen, J.K., and Stanley, H.E., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 62, p. 579.

    Article  CAS  Google Scholar 

  39. Luzar, A. and Chandler, D., Phys. Rev. Lett., 1996, vol. 76, p. 928.

    Article  CAS  Google Scholar 

  40. Luzar, A. and Chandler, D., Nature (London), 1996, vol. 379, p. 55.

    Article  CAS  Google Scholar 

  41. Luzar, A., J. Chem. Phys., 2000, vol. 113, p. 10663.

    Article  CAS  Google Scholar 

  42. Naberukhin, Yu.I. and Voloshin, V.P., Z. Phys. Chem., 2009, vol. 223, p. 1119.

    Article  CAS  Google Scholar 

  43. Conde, O. and Teixeira, J., J. Phys., 1983, vol. 44, p. 525.

    Article  CAS  Google Scholar 

  44. Khusnutdinov, R.M. and Mokshin, A.V., JETP Lett., 2014, vol. 100, p. 39.

    Article  Google Scholar 

  45. Hansen, J.P. and McDonald, I.R., Theory of Simple Liquids, New York: Academic, 2006.

    Google Scholar 

  46. Mokshin, A.V., Chvanova, A.V., and Khusnutdinov, R.M., Teor. Mat. Fiz., 2012, vol. 171, p. 135.

    Article  Google Scholar 

  47. Gallo, P. and Rovere, M., J. Chem. Phys., 2012, vol. 37, p. 164503.

    Article  Google Scholar 

  48. Götze, W., Complex Dynamics of Glass-Forming Liquids, Oxford: Oxford Univ. Press, 2009.

    Google Scholar 

  49. Khusnutdinov R.M., Mokshin A.V., and Khadeev I.I., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2014, vol. 8, p. 84.

    Article  Google Scholar 

  50. Cunsolo, A., Kodituwakku, C.N., Bencivenga, F., Frontzek, M., Leu, B.M., and Said, A.H., Phys. Rev. B, 2012, vol. 85, p. 174305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Khusnutdinoff.

Additional information

Original Russian Text © R.M. Khusnutdinoff, 2017, published in Kolloidnyi Zhurnal, 2017, Vol. 79, No. 1, pp. 104–112.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khusnutdinoff, R.M. Structural and dynamic features of water and amorphous ice. Colloid J 79, 152–159 (2017). https://doi.org/10.1134/S1061933X17010070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X17010070

Navigation