Skip to main content
Log in

Gas mixture flow in nanoporous media in the presence of surface forces. The dusty-gas model

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The dusty-gas model has been generalized to the case of gas mixture flow in nanoporous media under the conditions of the action of surface forces. A basic set of transport equations has been derived proceeding from kinetic equations for a gas mixture and dust particles. To take into account the surface forces, the interaction between a gas and dust particles has been represented as a sum of a long-range potential, which reflects the surface forces, and a short-range potential, which describes gas molecule scattering on the surface of pore walls. The contribution of the long-range component has been taken into account in the self-consistent approximation, while the short-range component has been considered in the standard manner. The surface forces have been shown to have a substantial effect on the transfer of mixed gases through porous bodies; in particular, it becomes possible to separate mixture components due to different potentials of the interaction of their molecules with pore surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roldughin, V.I. and Zhdanov, V.M., Colloid J., 2016, vol. 78, p. 363.

    Article  CAS  Google Scholar 

  2. Mason, E. and Malinauskas, A. Gas Transport in Porous Media: The Dusty Gas Model, New York: Elsevier, 1983.

    Google Scholar 

  3. Roldughin, V.I. and Zhdanov, V.M., Colloid J., 2003, vol. 65, p. 598.

    Article  CAS  Google Scholar 

  4. Roldughin, V.I. and Zhdanov, V.M., Techn. Phys., 2006, vol. 51, no. 4, p. 436.

    Article  Google Scholar 

  5. Roldughin, V.I., Colloid J., 2013, vol. 75, p. 593.

    Article  CAS  Google Scholar 

  6. Roldughin, V.I. and Zhdanov, V.M., Adv. Colloid Interface Sci., 2011, vol. 168, p. 223.

    Article  CAS  Google Scholar 

  7. Babac, G., Dongari, N., Zhang, Y., and Reese, J.M., AIP Conf. Proc., 2012, vol. 1501, p. 946.

    Article  CAS  Google Scholar 

  8. Zhdanov, V.M., Adv. Colloid Interface Sci., 1996, vol. 66, p. 1.

    Article  CAS  Google Scholar 

  9. Zhdanov, V.M. and Roldughin, V.I., Colloid J., 2002, vol. 64, p. 1.

    Article  CAS  Google Scholar 

  10. Derjaguin, B.V. and Bakanov, S.P., Dokl. Akad. Nauk SSSR, 1957, vol. 115, p. 267.

    Google Scholar 

  11. Derjaguin, B.V. and Bakanov, S.P., Zh. Tekh. Fiz., 1957, vol. 27, p. 2056.

    Google Scholar 

  12. Kagan, Yu., in Otchet UBTS 321-S Instituta atomnoi energii im. I.V. Kurchatova (Report UBTS 321-S of Kurchatov Inst. of Atomic Energy), Moscow, 1956.

    Google Scholar 

  13. Kagan, Yu., Doctoral (Phys.-Math.) Dissertation, Kurchatov Inst. of Atomic Energy, Moscow, 1957.

    Google Scholar 

  14. Evans, R.B., Watson, G.M., and Mason, E.A., J. Chem. Phys., 1961, vol. 35, p. 2076.

    Article  CAS  Google Scholar 

  15. Evans, R.B., Watson, G.M., and Mason, E.A., J. Chem. Phys., 1962, vol. 36, p. 1894.

    Article  CAS  Google Scholar 

  16. Evans, R.B., Watson, G.M., and Mason, E.A., J. Chem. Phys., 1963, vol. 38, p. 1808.

    Article  Google Scholar 

  17. Mason, E.A., Malinauskas, A.P., and Evans, R.B., J. Chem. Phys., 1967, vol. 46, p. 3199.

    Article  CAS  Google Scholar 

  18. Zhdanov, V.M., Kagan, Yu., and Sazykin, A.A., Zh. Eksp. Teor. Fiz., 1962, vol. 42, p. 857.

    CAS  Google Scholar 

  19. Grad, H., Commun. Pure Appl. Math., 1949, vol. 2, p. 331.

    Article  Google Scholar 

  20. Hirschfelder, J., Curtiss, C., and Bird, R., Molecular Theory of Gases and Liquids, New York: Wiley, 1954.

    Google Scholar 

  21. Klimontovich, Yu.L., Statisticheskaya teoriya elektromagnitnykh protsessov v plazme (Statistical Theory of Electromagnetic Processes in Plasma), Moscow: Mosk. Gos. Univ., 1964.

    Google Scholar 

  22. Silin, V.P., Vvedenie v kineticheskuyu teoriyu gazov (Introduction to Kinetic Theory of Gases), Moscow: Nauka, 1971.

    Google Scholar 

  23. Klimontovich, Yu.L., Statisticheskaya teoriya otkrytykh sistem (Statistical Theory of Open Systems), Moscow: Yanus, 1999, vol. 2.

    Google Scholar 

  24. Ferziger, J. and Kaper, H., Mathematical Theory of Transport Processes in Gases, Amsterdam: North-Holland, 1972.

    Google Scholar 

  25. Bonch-Bruevich, V.L., Statisticheskaya fizika i kvantovaya teoriya polya (Statistical Physics and Quantum Field Theory), Bogolyubov, N.N., Ed., Moscow: Nauka, 1972.

  26. Roldughin, V.I., Membrany i membrannye tekhnologii, (Membranes and Membrane Technologies), Yaroslavtsev, A.B., Ed., Moscow: Nauchnyi Mir, 2013.

  27. Zhdanov, V.M., Roldughin, V.I., and Sherysheva, E.E., Colloid J., 2010, vol. 75, p. 627.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Roldughin.

Additional information

Original Russian Text © V.I. Roldughin, V.M. Zhdanov, A.V. Shabatin, 2016, published in Kolloidnyi Zhurnal, 2016, Vol. 78, No. 6, pp. 772–782.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roldughin, V.I., Zhdanov, V.M. & Shabatin, A.V. Gas mixture flow in nanoporous media in the presence of surface forces. The dusty-gas model. Colloid J 79, 116–125 (2017). https://doi.org/10.1134/S1061933X16060120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X16060120

Navigation