Skip to main content
Log in

The effect of a lipophilic drug, felodipine, on the formation of nanoemulsions upon phase inversion induced by temperature variation

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The correlation between a dispersed phase/dispersion medium interfacial tension σ at a storage temperature of 22°C and the dispersity and stability of oil-in-water miniemulsions, which result from temperature-induced phase inversion, has been revealed for hydrocarbon/polyoxyethylene(4)lauryl ether/water systems (in the presence and absence of felodipine) with the help of conductometry, tensiometry, and dispersion analysis. At σ < 3.5 × 10–6 N/m, oil-in-water nanoemulsions, which have narrow monomodal particle size distributions and are stable for a month, are a fortiori formed. Felodipine has been shown to serve as a cosurfactant, which is incorporated into the adsorption layer of a basic stabilizing nonionic surfactant. Therewith, σ values increase and the temperature of phase inversion decreases, while the concentration of the basic surfactant in an optimal composition must be substantially reduced. A heptane/water nanoemulsion (droplet size of 75 nm) stabilized with a basic nonionic surfactant and Tween 80 exhibits a high solubilization capacity with respect to felodipine and ensures its efficient mass transfer through a model membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lipinski, A., Am. Pharm. Res., 2002, vol. 19, p. 1894.

    Article  Google Scholar 

  2. Vemula, V.R., Lagishetty, V., and Lingala, S., Int. J. Pharm. Sci. Rev. Res., 2010, vol. 5, p. 41.

    CAS  Google Scholar 

  3. Savjani, K.T., Gajjar, A.K., and Savjani, J.K., SRN Pharm., 2012, p. 5402.

    Google Scholar 

  4. Rangel-Yagui, C.O., Junior, A.P., and Tavares, L.C., J. Pharm. Pharm. Sci., 2005, vol. 8, no. 2, p. 147.

    CAS  Google Scholar 

  5. Zadymova, N.M. and Ivanova, N.I., Colloid J., 2013, vol. 75, p. 159.

    Article  CAS  Google Scholar 

  6. Zadymova, N.M. and Ivanova, N.I., Moscow Univ. Chem. Bull., 2013, vol. 68, p. 112.

    Article  Google Scholar 

  7. Malmsten, M., Surfactants and Polymers in Drug Delivery, New York: Marcel Dekker, 2002.

    Book  Google Scholar 

  8. Malmsten, M., Soft Matter, 2006, vol. 2, p. 760.

    Article  CAS  Google Scholar 

  9. Lawrence, M.J. and Rees, G.D., Adv. Drug Delivery Rev., 2000, vol. 45, p. 89.

    Article  CAS  Google Scholar 

  10. Lovelyn, C. and Attama, A.A., J. Biomater. Nanobiotechnol., 2011, vol. 2, p. 626.

    Article  CAS  Google Scholar 

  11. Saha, S. and Ramesh, R., Int. J. Pharm. Tech. Res., 2014–2015, vol. 7, p. 616.

    CAS  Google Scholar 

  12. Mason, T.G., Wilking, J.N., Meleson, K., Chang, C.B., and Graves, S.M., J. Phys.: Condens. Matter, 2006, vol. 18, p. R635.

    CAS  Google Scholar 

  13. Solans, C., Izquierdo, P., Nolla, J., Azemar, N., and Garcia-Celma, M.J., Curr. Opin. Colloid Interface Sci., 2005, vol. 10, p. 102.

    Article  CAS  Google Scholar 

  14. Tadros, T., Izquierdo, P., Esquena, J., and Solans, C., Adv. Colloid Interface Sci., 2004, vols. 108–109, p. 303.

    Article  Google Scholar 

  15. Fryd, M.M. and Mason, T.G., Annu. Rev. Phys. Chem., 2012, vol. 63, p. 493.

    Article  CAS  Google Scholar 

  16. Koroleva, M.Yu. and Yurtov, E.V., Usp. Khim., 2012, vol. 81, p. 21.

    Article  CAS  Google Scholar 

  17. Gupta, A., Eral, H.B., Hattona, T.A., and Doyle, P.S., Soft Matter, 2016, vol. 12, p. 2826.

    Article  CAS  Google Scholar 

  18. Gutierrez, J.M., Gonzalez, C., Maestro, A., Sole, I., Pey, C.M., and Nolla, J., Curr. Opin. Colloid Interface Sci., 2008, vol. 13, p. 245.

    Article  CAS  Google Scholar 

  19. McClements, D.J., Soft Matter, 2012, vol. 8, p. 1719.

    Article  CAS  Google Scholar 

  20. Anton, N. and Vandamme, T.F., Pharm. Res., 2011, vol. 28, p. 978.

    Article  CAS  Google Scholar 

  21. Mason, T.G., Graves, S.M., Wilking, J.N., and Lin, M.Y., Condens. Matter Phys., 2006, vol. 9, p. 193.

    Article  Google Scholar 

  22. Jafari, S.M., He, Y., and Bhandari, B., Eur. Food Res. Technol., 2007, vol. 225, p. 733.

    Article  CAS  Google Scholar 

  23. Quin, C. and McClements, D.J., Food Hydrocolloids, 2011, vol. 25, p. 1000.

    Article  Google Scholar 

  24. Kentish, S., Wooster, T.J., Ashokkumar, M., Balachandran, S., Mawson, R., and Simons, L., Innov. Food Sci. Emerg. Technol., 2008, vol. 9, p. 170.

    Article  CAS  Google Scholar 

  25. Ghosh, V., Mukherjee, A., and Chandrasekaran, N., Ultrason. Sonochem., 2013, vol. 20, p. 338.

    Article  CAS  Google Scholar 

  26. Li, M., Ma, Y., and Cui, J., LWT-Food Sci. Technol., 2014, vol. 59, p. 49.

    Article  CAS  Google Scholar 

  27. Lu, W.-C., Chiang, B.-H., Huang, D.-W., and Li, P.Y., Ultrason. Sonochem., 2014, vol. 21, p. 826.

    Article  CAS  Google Scholar 

  28. Prabhakar, K., Afzal, S.M., Surender, G., and Kishan, V., Acta Pharm. Sin., vol. 3, p. 345.

  29. Li, Y., Zheng, J., Xiao, H., and McClements, D.J., Food Hydrocolloids, 2012, vol. 27, p. 517.

    Article  CAS  Google Scholar 

  30. Kourniatis, L.R., Spinelli, L.S., Piombini, C.R., and Mansur, C.R.E., Colloid J., 2010, vol. 72, p. 396.

    Article  CAS  Google Scholar 

  31. Solans, C. and Sole, I., Curr. Opin. Colloid Interface Sci., 2012, vol. 17, p. 246.

    Article  CAS  Google Scholar 

  32. Sole, I., Maestro, A., Pey, C.M., Gonzalez, C., Solans, C., and Gutierrez, J.M., Colloids Surf. A, 2006, vol. 288, p. 138.

    Article  CAS  Google Scholar 

  33. Sole, I., Pey, C.M., Maestro, A., Gonzalez, C., Porras, M., Solans, C., and Gutierrez, J.M., J. Colloid Interface Sci., 2010, vol. 344, p. 417.

    Article  CAS  Google Scholar 

  34. Anton, N. and Vandamme, T.F., Int. J. Pharm., 2009, vol. 377, p. 142.

    Article  CAS  Google Scholar 

  35. Pérez, E.P., Alves, D., Enright, M.C., Bean, J.E., Gaudion, A., Jenkins, A.T.A., Young, A.E.R., and Arnot, T.C., Biotechnol. Prog., 2014, vol. 30, p. 932.

    Article  Google Scholar 

  36. Izquierdo, P., Feng, J., Esquena, J., Tadros, T.F., Dederen, J.C., Garcia-Celma, M.J., Azemar, N., and Solans, C., J. Colloid Interface Sci., 2005, vol. 285, p. 388.

    Article  CAS  Google Scholar 

  37. Pey, C.M., Maestro, A., Solé, I., González, C., Solans, C., and Gutierrez, J.M., Colloids Surf. A, 2006, vol. 288, p. 144.

    Article  CAS  Google Scholar 

  38. Sajjadi, S., Langmuir, 2006, vol. 22, p. 5597.

    Article  CAS  Google Scholar 

  39. Sagitani, H., Surfactant Sci. Ser., 1992, vol. 44, p. 259.

    CAS  Google Scholar 

  40. Forgiarini, A., Esquena, J., Gonzalez, C., and Solans, C., Langmuir, 2001, vol. 17, p. 2076.

    Article  CAS  Google Scholar 

  41. Preziosi, V., Perazzo, A., Caserta, S., Tomaiuolo, G., and Guido, S., Chem. Eng. Trans., 2013, vol. 32, p. 1585.

    Google Scholar 

  42. Fernandez, P., Andre, V., Rieger, J., and Kuhnle, A., Colloids Surf. A, 2004, vol. 251, p. 53.

    Article  CAS  Google Scholar 

  43. Shinoda, K. and Saito, H.J., J. Colloid Interface Sci., 1968, vol. 26, p. 70.

    Article  CAS  Google Scholar 

  44. Shinoda, K. and Saito, H.J., J. Colloid Interface Sci., 1969, vol. 30, p. 258.

    Article  CAS  Google Scholar 

  45. Izquierdo, P., Esquena, J., Tadros, T.F., Dederen, C., Garcia-Celma, M.J., Azemar, N., and Solans, C., Langmuir, 2002, vol. 18, p. 26.

    Article  CAS  Google Scholar 

  46. Anton, N., Saulnier, P., Beduneau, A., and Benoit, J.-P., J. Phys. Chem. B, 2007, vol. 111, p. 3651.

    Article  CAS  Google Scholar 

  47. Ee, S.L., Duan, X., Liew, J., and Nguyen, Q.D., Chem. Eng. J., 2008, vol. 140, p. 626.

    Article  CAS  Google Scholar 

  48. Wadle, A., Förster, T., and Rybinski, W.V., Colloids Surf. A, 1993, vol. 76, p. 51.

    Article  CAS  Google Scholar 

  49. Morales, D., Gutierrez, J.M., García-Celma, M.J., and Solans, C., Langmuir, 2003, vol. 19, p. 7196.

    Article  CAS  Google Scholar 

  50. Formiga, F.R., Fonseca, I.A., Souza, K.B., Silva, F.R., Macedo, J.P., Araujo, I.B., Soares, L.A., and Egito, E.S., Int. J. Pharm., 2007, vol. 344, p. 158.

    Article  CAS  Google Scholar 

  51. Klassen, P.L., George, Z., Warwick, J., and Georgiadou, S., Colloids Surf. A, 2014, vol. 455, p. 1.

    Article  CAS  Google Scholar 

  52. http://www.drugbank.ca/drugs/.

  53. Rao, J. and McClements, D.J., J. Agric. Food Chem., 2010, vol. 58, p. 7059.

    Article  CAS  Google Scholar 

  54. http://www.sigmaaldrich.com/catalog/product/sial/235989?lang=en&region=RU.

  55. Schönfeldt, N., Grenzfachenaktive Athylenoxid-Addukte, Stuttgart: Wissenschaftliche, 1976.

    Google Scholar 

  56. Izquierdo, P., Esquena, J., Tadros, T.F., Dederen, C., Feng, J., Garcia-Celma, M.J., Azemar, N., and Solans, C., Langmuir, 2004, vol. 20, p. 6594.

    Article  CAS  Google Scholar 

  57. Sharif, A.A.M., Astaraki, A.M., Azar, P.A., Khorrami, S.A., and Moradi, S., Arabian J. Chem., 2012, vol. 5, p. 41.

    Article  CAS  Google Scholar 

  58. Zadymova, N.M., Karmasheva, N.V., Poteshnova, M.V., Tsikurina, N.N., Colloid J., 2002, vol. 64, p. 400.

    Article  CAS  Google Scholar 

  59. Zadymova, N.M., Tsikurina, N.N., and Poteshnova, M.V., Colloid J., 2003, vol. 65, p. 314.

    Article  CAS  Google Scholar 

  60. Lehnert, S., Tarabishi, H., and Leuenberger, H., Colloids Surf. A, 1994, vol. 91, p. 227.

    Article  CAS  Google Scholar 

  61. Kantarci, G., Ozguney, I., Karasulu, Y., Arzik, S., and Guneri, T., AAPS PharmSciTec, 2007, vol. 8, p. 75.

    Article  Google Scholar 

  62. Tavares, L., Shevchuk, I., Alfonso, M., Marcenyak, G., and Valia, K. US Patent 7018649, 2006.

    Google Scholar 

  63. Sottman, T. and Strey, R., J. Chem. Phys., 1997, vol. 106, p. 8606.

    Article  Google Scholar 

  64. Tadros, T., Izquierdo, P., Esquena, J., and Solans, C., Adv. Colloid Interface Sci., 2004, vols. 108–109, p. 303.

    Article  Google Scholar 

  65. Wennerström, H., Balogh, J., and Olsson, B.U., Colloids Surf. A, 2006, vol. 291, p. 69.

    Article  Google Scholar 

  66. Lifshits, I.M. and Slezov, V.V., Zh. Eksp. Teor. Fiz., 1958, vol. 35, p. 479.

    CAS  Google Scholar 

  67. Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids, 1961, vol. 19, p. 35.

    Article  Google Scholar 

  68. Wagner, C.Z., Z. Electrochem., 1961, vol. 65, p. 581.

    CAS  Google Scholar 

  69. Kabal’nov, A.S., Pertsov, A.V., and Shchukin, E.D., Kolloidn. Zh., 1984, vol. 46, p. 1108.

    Google Scholar 

  70. Kabalnov, A.S. and Shchukin, E.D., Adv. Colloid Interface Sci., 1992, vol. 38, p. 69.

    Article  CAS  Google Scholar 

  71. Sakai, T., Kamogawa, K., and Nishiyama, K., Langmuir, 2002, vol. 18, p. 1985.

    Article  CAS  Google Scholar 

  72. Handbook of Aqueous Solubility Data, Yalkowsky, S.H. and He, Y., Eds., Boca Raton: CRC, 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Zadymova.

Additional information

Original Russian Text © G.A. Arshakyan, N.M. Zadymova, 2016, published in Kolloidnyi Zhurnal, 2016, Vol. 78, No. 6, pp. 688–699.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshakyan, G.A., Zadymova, N.M. The effect of a lipophilic drug, felodipine, on the formation of nanoemulsions upon phase inversion induced by temperature variation. Colloid J 79, 1–12 (2017). https://doi.org/10.1134/S1061933X16060028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X16060028

Navigation