Colloid Journal

, Volume 78, Issue 5, pp 608–615 | Cite as

Sol–gel transition and rheological properties of silica nanoparticle dispersions

  • S. O. Ilyin
  • M. P. Arinina
  • A. Ya. Malkin
  • V. G. Kulichikhin


Possible variants of the rheological behavior of silica model dispersions have been analyzed. Different types of interaction between the particles and a dispersion medium make it possible to obtain different systems from low-viscosity sols to gels. Proton-donor (water) and aprotic (dimethyl sulfoxide) media have been used for comparison. Dispersions in the aprotic medium behave as non-Newtonian viscous fluids exhibiting shear thinning or shear thickening depending on deformation rate. Aqueous dispersions are viscoelastic and viscoplastic objects that exhibit the shear thickening at stresses higher than the yield stress. The introduction of small amounts of poly(ethylene oxide) into the organic dispersion medium initiates gelation. An increase in the polymer content in the dispersion medium above the concentration corresponding to the formation of a macromolecular network promotes an increase in stiffness and strength of the gels. The rheological behavior of gels is influenced by the polymer molecular mass and its affinity for a solvent.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coussot, P., J. Non-Newtonian Fluid Mech., 2014, vol. 211, p. 31.CrossRefGoogle Scholar
  2. 2.
    Balmforth, N.J., Frigaard, I.A., and Ovarlez, G., Annu. Rev. Fluid Mech., 2014, vol. 46, p. 121.CrossRefGoogle Scholar
  3. 3.
    Bonn, D., Paredes, J., Denn, M.M., Berthier, L., Divoux, T., and Manneville, S., arXiv: 1502.05281 [cond-mat.soft].Google Scholar
  4. 4.
    Ilyin, S.O., Malkin, A.Y., Kulichikhin V.G., Colloid J., 2012, vol. 74, p. 472.CrossRefGoogle Scholar
  5. 5.
    Ovarlez, G., Barral, Q., and Coussot, P., Nat. Mater., 2010, vol. 9, p. 115.CrossRefGoogle Scholar
  6. 6.
    Maiti, M. and Heussinger, C., Phys. Rev. E: Stat. Phys. Plasmas, Fluids, Relat. Interdiscip. Top., 2014, vol. 89, p. 052308.CrossRefGoogle Scholar
  7. 7.
    Malkin, A.Y. and Kulichikhin, V.G., Colloid J., 2016, vol. 78, p. 1.CrossRefGoogle Scholar
  8. 8.
    Malkin, A.Y., J. Non-Newtonian Fluid Mech., 2013, vol. 192, p. 48.CrossRefGoogle Scholar
  9. 9.
    Semakov, A.V., Kulichikhin, V.G., Tereshin, A.K., Antonov, S.V., and Malkin, A.Y., J. Polym. Sci., Part B: Polym. Phys., 2015, vol. 53, p. 559.CrossRefGoogle Scholar
  10. 10.
    Ilyin, S.O., Kulichikhin, V.G., and Malkin, A.Ya., Polym. Sci., Ser. A, 2013, vol. 55, p. 503.CrossRefGoogle Scholar
  11. 11.
    McFarlane, N.L., Wagner, N.J., Kaler, E.W., and Lynch, M.L., Langmuir, 2010, vol. 26, p. 13823.CrossRefGoogle Scholar
  12. 12.
    Liu, S.F., Lafuma, F., and Audebert, R., Colloid Polym. Sci., 1994, vol. 272, p. 196.CrossRefGoogle Scholar
  13. 13.
    Yue, Y., Zhang, C., Zhang, H., Zhang, D., Chen, X., Chen, Y., and Zhang, Z., Composites B, 2013, vol. 53, p. 152.CrossRefGoogle Scholar
  14. 14.
    Zhang, Q. and Archer, L.A., Langmuir, 2002, vol. 18, p. 10435.CrossRefGoogle Scholar
  15. 15.
    Cassagnau, Ph., Polymer, 2008, vol. 49, p. 2183.CrossRefGoogle Scholar
  16. 16.
    Kostyuk, A., Ignatenko, V., Smirnova, N., Brantseva, T., Ilyin, S., and Antonov, S., J. Adhes. Sci. Technol., 2015, vol. 29, p. 1831.CrossRefGoogle Scholar
  17. 17.
    Ilyin, S.O., Brantseva, T.V., Gorbunova, I.Y., Antonov, S.V., Korolev, Y.M., and Kerber, M.L., Int. J. Adhes. Adhes., 2015, vol. 61, p. 127.CrossRefGoogle Scholar
  18. 18.
    Brantseva, T., Antonov, S., Kostyuk, A., Ignatenko, V., Smirnova, N., Korolev, Y., Tereshin, A., and Ilyin, S., Eur. Polym. J., 2016, vol. 76, p. 228.CrossRefGoogle Scholar
  19. 19.
    Marangoni, A.G., Phys. Rev. B, 2000, vol. 62, p. 13951.CrossRefGoogle Scholar
  20. 20.
    Uriev, N.B. and Ladyzhinsky, I.Y., Colloids Surf. A, 1996, vol. 108, p. 1.CrossRefGoogle Scholar
  21. 21.
    Potanin, A.A. and Uriev, N.B., J. Colloid Interface Sci., 1991, vol. 142, p. 385.CrossRefGoogle Scholar
  22. 22.
    Snoeyink, V.L., Walter, J., and Weber, W.J., in Progress in Surface and Membrane Science, Danielli, J.F., Rosenberg, M.D., and Cadenhead, D.A., Eds., New York: Academic, 1972, p. 63.Google Scholar
  23. 23.
    Malkin, A.Y. and Kulichikhin, V.G., Appl. Rheol., 2015, vol. 25, p. 35358.Google Scholar
  24. 24.
    Uriev, N.B., Russ. Chem. Rev., 2004, vol. 73, p. 37.CrossRefGoogle Scholar
  25. 25.
    Malkin, A., Ilyin, S., Semakov, A., and Kulichikhin, V., Soft Matter, 2012, vol. 8, p. 2607.CrossRefGoogle Scholar
  26. 26.
    Bonn, D. and Denn, M.M., Science (Washington, D. C.), 2009, vol. 324, p. 1401.CrossRefGoogle Scholar
  27. 27.
    Graessley, W.W., Polymer, 1980, vol. 21, p. 258.CrossRefGoogle Scholar
  28. 28.
    Hammouda, B., Ho, D.L., and Kline, S., Macromolecules, 2004, vol. 37, p. 6932.CrossRefGoogle Scholar
  29. 29.
    Rangelov, S. and Brown, W., Polymer, 2000, vol. 41, p. 4825.CrossRefGoogle Scholar
  30. 30.
    Zhang, Q. and Archer, L.A., Langmuir, 2002, vol. 18, p. 10435.CrossRefGoogle Scholar
  31. 31.
    Hansen, C.M., Hansen Solubility Parameters: A User’s Handbook, Boca Raton CRC Press, 2007.CrossRefGoogle Scholar
  32. 32.
    Ilyin, S.O., Pupchenkov, G.S., Krasheninnikov, A.I., Kulichikhin, V.G., and Malkin, A.Ya., Colloid J., 2013, vol. 75, p. 267.CrossRefGoogle Scholar
  33. 33.
    Vinogradov, G.V., Protasov, V.P., and Dreval, V.E., Rheol. Acta, 1984, vol. 23, p. 46.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. O. Ilyin
    • 1
  • M. P. Arinina
    • 1
  • A. Ya. Malkin
    • 1
  • V. G. Kulichikhin
    • 1
    • 2
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of Fundamental Physical and Chemical EngineeringMoscow State UniversityMoscowRussia

Personalised recommendations