Colloid Journal

, Volume 77, Issue 6, pp 795–801 | Cite as

Synchrotron radiation phase-contrast computed tomography study on self-assembly of polystyrene colloidal crystals via solvent evaporation

  • Yanan FuEmail author
  • Honglan Xie
  • Biao Deng
  • Guohao Du
  • Tiqiao Xiao


The colloidal crystals of polystyrene (PS) spheres were assembled from the emulsion of PS by an in situ solvent evaporation method. The local internal 3D structure of the fabricated colloidal crystals was noninvasively characterized with synchrotron radiation phase-contrast computed tomography. The satisfactory contrast difference was obtained and the shapes of the spheres were clearly reconstructed. Based on the slice images, the two-stage mechanism of crystallization process for in situ evaporation was suggested. In the initial stage, stable nucleation and growth result in formation of an ordered face-centered cubic structure with the sphere volume fraction 70.2%, which is very close to the maximum sphere packing volume fraction 74%. In the second stage, the sphere concentration in suspension decreased too much to support an adequate sphere transfer through the solvent flux to the growth front. The transformation from square to hexagonal lattice did not therefore complete under the same evaporation rate. This incompleteness results in formation of local ordered structure with randomly arranged hexagonal and square packing with a slightly low volume fraction of 68.41%.


Colloid Journal Colloidal Crystal Void Volume Fraction Phase Retrieval Void System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xia, Y., Gates, B., Yin, Y., and Lu, Y., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 2000, vol. 12, p. 693.CrossRefGoogle Scholar
  2. 2.
    López, C., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 2003, vol. 15, p. 1679.CrossRefGoogle Scholar
  3. 3.
    Gasser, U., Weeks, E.R., Schofield, A., Pusey, P.N., and Weitz, D.A., Science (Washington, D. C.), 2001, vol. 292, p. 258.CrossRefGoogle Scholar
  4. 4.
    Zhong, Z., Yin, Y., Gates, B., and Xia, Y., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 2000, vol. 12, p. 206.CrossRefGoogle Scholar
  5. 5.
    Yi, D.K. and Kim, D.-Y., Chem. Commun., 2003, p. 982.Google Scholar
  6. 6.
    Kulinowski, K.M., Jiang, P., Vaswani, H., and Colvin, V.L., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 2000, vol. 12, p. 833.CrossRefGoogle Scholar
  7. 7.
    Waterhouse, G.I.N. and Waterland, M.R., Polyhedron, 2007, vol. 26, p. 356.CrossRefGoogle Scholar
  8. 8.
    Mayoral, R., Requena, J., Moya, J.S., López, C., Cintas, A., Miguez, H., Meseguer, F., Vazquez, L., Holgado, M., and Blanco, A., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 1997, vol. 9, p. 257.CrossRefGoogle Scholar
  9. 9.
    Miguez, H., Meseguer, F., López, C., Blanco, A., Moya, J.S., Requena, J., Mifsud, A., and Fornes, V., Adv. Mater. (Weinheim, Fed. Repub. Ger.), 1998, vol. 10, p. 480.CrossRefGoogle Scholar
  10. 10.
    Denkov, N.D., Velev, O.D., Kralchevsky, P.A., Ivanov, I.B., Yoshimura, H., and Nagayama, K., Langmuir, 1992, vol. 8, p. 3183.CrossRefGoogle Scholar
  11. 11.
    Ye, Y.-H., Leblanc, F., Hache, A., and Truong, V.-V., Appl. Phys. Lett., 2001, vol. 78, p. 52.CrossRefGoogle Scholar
  12. 12.
    Liu, Y., Wang, S., Lee, J.W., and Kotov, N.A., Chem. Mater., 2005, vol. 17, p. 4918.CrossRefGoogle Scholar
  13. 13.
    Park, S.H. and Xia, Y., Langmuir, 1999, vol. 15, p. 266.CrossRefGoogle Scholar
  14. 14.
    Fu, Y., Jin, Z., Liu, G., and Yin, Y., Synth. Met., 2009, vol. 159, p. 1744.CrossRefGoogle Scholar
  15. 15.
    Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., and Witten, T.A., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 62, p. 756.CrossRefGoogle Scholar
  16. 16.
    Vlasov, Yu.A., Astratov, V.N., Baryshev, A.V., Kaplyanskii, A.A., Karimov, O.Z., and Limonov, M.F., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 61, p. 5784.CrossRefGoogle Scholar
  17. 17.
    Meijer, J.-M., De Villeneuve, V.W.A., and Petukhov, A.V., Langmuir, 2007, vol. 23, p. 3554.CrossRefGoogle Scholar
  18. 18.
    Woodcock, L., Nature (London), 1997, vol. 385, p. 141.CrossRefGoogle Scholar
  19. 19.
    Fu, Y., Xie, H., Deng, B., Du, G., Chen, R., and Xiao, T., Appl. Phys. A, 2014, vol. 115, p. 781.CrossRefGoogle Scholar
  20. 20.
    Paganin, D., Mayo, S.C., Gureyev, T.E., Miller, P.R., and Wilkins, S.W., J. Microsc., 2002, vol. 206, p. 33.CrossRefGoogle Scholar
  21. 21.
    Wu, X., Liu, H., and Yan, A., Opt. Lett., 2005, vol. 30, p. 379.CrossRefGoogle Scholar
  22. 22.
    Chen, R.C., Rigon, L., and Longo, R., Opt. Express, 2013, vol. 21, p. 7384.CrossRefGoogle Scholar
  23. 23.
    Chen, R.-C., Dreossi, D., Mancini, L., Menk, R., Rigon, L., Xiao, T.-Q., and Longo, R., J. Synchrotron Radiat., 2012, vol. 19, p. 836.CrossRefGoogle Scholar
  24. 24.
    O’Sullivan, J.D., IEEE Trans. Med. Imaging, 1985, vol. 4, p. 200.CrossRefGoogle Scholar
  25. 25.
    Ketcham, R.A., Geosphere, 2005, vol. 1, p. 32.CrossRefGoogle Scholar
  26. 26.
    Ketcham, R.A. and Ryan, T., M, J. Microsc., 2004, vol. 213, p. 158.CrossRefGoogle Scholar
  27. 27.
    Canalejas-Tejero, V., Ibisate, M., Golmayo, D., Blanco, A., and López, C., Langmuir, 2012, vol. 28, p. 161.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Yanan Fu
    • 1
    Email author
  • Honglan Xie
    • 1
  • Biao Deng
    • 1
  • Guohao Du
    • 1
  • Tiqiao Xiao
    • 1
  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of ScienceShanghaiChina

Personalised recommendations