Skip to main content
Log in

A magnetic fluid for operation in strong gradient fields

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The properties of a magnetic fluid based on colloidal magnetite and VM-3 vacuum oil have been experimentally studied. The fluid is designed for a long-term operation in strong gradient magnetic fields. A variant of magneto-granulometric analysis has been proposed that makes it possible to determine the average magnetic moment, variance of magnetic moments, and number density of particles with no a priori assumptions of the particle size distribution. Magneto-granulometric and cluster analyses of the magnetic fluid have been carried out. It has been shown that individual particles with an average diameter of the magnetic core of 7 nm, which is markedly smaller than those in common commercial fluids, prevail in the studied solution. The volume concentration of multiparticle clusters is also low; their total contribution to the initial magnetic susceptibility of the fluid only slightly exceeds 3%. The small particle sizes and the low cluster concentration provide the colloidal solution with a high stability in a strong magnetic field and a centrifugal force field at a rather high saturation magnetization of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pshenichnikov, A.F., Elfimova, E.A., and Ivanov, A.O., J. Chem. Phys., 2011, vol. 134, p. 184508.

    Article  Google Scholar 

  2. Pshenichnikov, A.F. and Ivanov, A.S., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2012, vol. 86, p. 051401.

    Article  CAS  Google Scholar 

  3. Chong, J.S., Christiansen, E.B., and Baer, A.D., J. Appl. Polym. Sci., 1971, vol. 15, p. 2007.

    Article  CAS  Google Scholar 

  4. Farris, R.J., Trans. Soc. Rheol., 1968, vol. 12, p. 281.

    Article  Google Scholar 

  5. Pshenichnikov, A.F. and Gilev, V.G., Colloid J., 1997, vol. 59, p. 346.

    CAS  Google Scholar 

  6. Landau, L., Lifshitz, E., and Pitaevski, L., Electrodynamics of Continuous Media, Oxford: Pergamon, 1984.

    Google Scholar 

  7. Shliomis, M.I., Usp. Fiz. Nauk, 1974, vol. 112, p. 427.

    Article  CAS  Google Scholar 

  8. Dikanskii, Yu.I., Magn. Gidrodin., 1984, no. 1, p. 123.

    Google Scholar 

  9. Pshenichnikov, A.F., Silaev, V.A., and Avdeeva, L.A., Pribory i metody izmerenii fizicheskikh parametrov ferrokolloidov (Instruments and Techniques of Ferrocolloid Physical Parameters Measurements), Shliomis, M.I., Ed., Sverdlovsk: Ural. Otd., Akad. Nauk SSSR, 1991.

  10. Pshenichnikov, A.F., Mekhonoshin, V.V., and Lebedev, A.V., J. Magn. Magn. Mater., 1996, vol. 161, p. 94.

    Article  CAS  Google Scholar 

  11. Ivanov, A.O. and Kuznetsova, O.B., Colloid J., 2006, vol. 68, p. 430.

    Article  CAS  Google Scholar 

  12. Ivanov, A.O., Kantorovich, S.S., Reznikov, E.N., Holm, C., Pshenichnikov, A.F., Lebedev, A.V., Chremos, A., and Camp, P.J., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2007, vol. 75, p. 061405.

    Article  Google Scholar 

  13. Ivanov, A.O., Kantorovich, S.S., Reznikov, E.N., Holm, C., Pshenichnikov, A.F., Lebedev, A.V., Chremos, A., and Camp, P.J., Magnetohydrodynamics, 2007, vol. 43, p. 393.

    Google Scholar 

  14. Pshenichnikov, A.F. and Lebedev, A.V., J. Chem. Phys., 2004, vol. 121, p. 5455.

    Article  CAS  Google Scholar 

  15. Pshenichnikov, A.F. and Lebedev, A.V., Colloid J., 2005, vol. 67, p. 189.

    Article  CAS  Google Scholar 

  16. Dikanskii, Yu.I., Magn. Gidrodin., 1982, no. 3, p. 33.

    Google Scholar 

  17. Morozov, K.I., Izv. Akad. Nauk SSSR, Ser. Fiz., 1987, vol. 51, p. 1073.

    Google Scholar 

  18. Morozov, K.I., J. Chem. Phys., 2007, vol. 126, p. 194506.

    Article  Google Scholar 

  19. Pshenichnikov, A.F., J. Magn. Magn. Mater., 1995, vol. 145, p. 319.

    Article  CAS  Google Scholar 

  20. Buzmakov, V.M. and Pshenichnikov, A.F., Colloid J., 2001, vol. 63, p. 275.

    Article  CAS  Google Scholar 

  21. Lakhtina, E.V. and Pshenichnikov, A.F., Colloid J., 2006, vol. 68, p. 294.

    Article  CAS  Google Scholar 

  22. Pshenichnikov, A.F., Prib. Tekh. Eksp., 2007, no. 4, p. 88.

    Google Scholar 

  23. Chekanov, V.V., Doctoral (Phys.-Math.) Dissertation, Stavropol: Stavropol State Univ., 1985.

  24. Lakhtina, E.V. and Pshenichnikov, A.F., Colloid J., 2010, vol. 72, p. 236.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Pshenichnikov.

Additional information

Original Russian Text © A.F. Pshenichnikov, A.V. Lebedev, A.V. Radionov, D.V. Efremov, 2015, published in Kolloidnyi Zhurnal, 2015, Vol. 77, No. 2, pp. 207–213.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshenichnikov, A.F., Lebedev, A.V., Radionov, A.V. et al. A magnetic fluid for operation in strong gradient fields. Colloid J 77, 196–201 (2015). https://doi.org/10.1134/S1061933X15020155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X15020155

Keywords

Navigation