Skip to main content
Log in

Aggregates of poly-functional amphiphilic molecules in water and oil phases

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The solvation and aggregate formation of complex amphiphilic molecules such as tetra-acids in polar and nonpolar phases are studied via Molecular Dynamics simulations. The nonpolar core of tetra-acid molecules is found to be effectively impermeable for water molecules resulting in a low solubility in the polar solvent, while nonpolar solvent molecules sufficiently solvate the amphiphilic molecules considered, enabling an open conformation of their molecular structure. The rigidity of the core region of the tetra-acid molecules has been found to play a crucial role in their behavior in both polar and nonpolar phases. In the polar phase, simulations have shown that tetra-acids form micelle-like structures with a small aggregation number, confirming previous experimental work. The identification of a case of study in which micelle-like structures can form only with a small aggregation number enables the study via Molecular Dynamics of micelle-micelle interactions. Micelle stability and dispersion in the polar phase under different conditions can be therefore investigated. In the nonpolar phase, the preferential interactions between carboxyl groups, the affinity of the tetra-acids with the solvent molecules, and the structural characteristics of the central core moiety of the tetra-acids have been found to possibly induce a web like array, or network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McClements, D., Food Emulsions. Principles, Practices, and Techniques., Boca Raton: CRC Press, 2005.

    Google Scholar 

  2. Baugh, T.D., Wolf, N.O., Mediaas, H., Vindstad, J.E., and Grande, K.V., Prepr. Am. Chem. Soc., Div. Pet. Chem., 2004, vol. 49, p. 274.

    CAS  Google Scholar 

  3. Shelley, J.C. and Shelley, M.Y., Curr. Opin. Colloid Interface Sci. 2000, vol. 5, p. 101.

    Article  CAS  Google Scholar 

  4. Ladanyi, B.M., Curr. Opin. Colloid Interface Sci. 2013, vol. 18, p. 15.

    Article  CAS  Google Scholar 

  5. Kralova, I., Sjöblom, J., Øye, G., Simon, S., Grimes, B.A., and Paso, K., Adv. Colloid Interface Sci., 2011, vol. 169, p. 106.

    Article  CAS  Google Scholar 

  6. Riccardi, E., Kovalchuk, K., Mehandzhiyski, A.Y., and Grimes, B.A., J. Disp. Sci. Technol., 2013, DOI 10.1080/01932691.2013.826584, in press.

    Google Scholar 

  7. Namani, T. and Walde, P., Langmuir, 2005, vol. 21, p. 6210.

    Article  CAS  Google Scholar 

  8. Zhang, R. and Somasundaran, P., Adv. Colloid Interface Sci., 2006, vol. 123, p. 213.

    Article  Google Scholar 

  9. Stepherson, B.C., Beers, K., and Blankschtein, D., Langmuir, 2006, vol. 22, p. 1500.

    Article  Google Scholar 

  10. Baugh, T.D., Grande, K.V., Mediaas, H., Vindstad, J.E., and Wolf, N.O., SPE Seventh Int. Symp. on Oilfield Scale, 2005, New York: Curran Associates, p. 8.

    Google Scholar 

  11. Lutnaes, F., Brandal, Ø., Sjöblom, J., and Krane, J., Org. Biomol. Chem., 2006, vol. 4, p. 616.

    Article  CAS  Google Scholar 

  12. Nordgård, E.L. and Sjöblom, J., J. Disp. Sci. Technol., 2008, vol. 29, p. 1114.

    Article  Google Scholar 

  13. Nordgaård, E.L., Magnusson, H., Hanneseth, A.-M.D., and Sjöblom, J., Colloids Surf. A, 2009, vol. 340, p. 99.

    Article  Google Scholar 

  14. Ge, L., Simon, S., Grimes, B., Norgård, E., Xu, Z., and Sjöblom, J., J. Disp. Sci. Technol., 2011, vol. 32, p. 1582.

    Article  CAS  Google Scholar 

  15. Simon, S., Knudsen, K., Norgård, E., Reisen, C., and Sjöblom, J. Colloid Interface Sci., 2013, vol. 394, p. 277.

    Article  CAS  Google Scholar 

  16. Nordgård, E.L., Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, 2009.

    Google Scholar 

  17. Jorgensen, W.L., Maxwell, D.S., and Tirado-Rives, J., J. Am. Chem. Soc., 1996, vol. 118, p. 11225.

    Article  CAS  Google Scholar 

  18. Abascal, J.L.F. and Vega, C., J. Chem. Phys. 2005, vol. 123, p. 234505.

    Article  CAS  Google Scholar 

  19. Hess, B., van der Spoel, D., and Lindahl, E., GRO-MACS. User Manual. Version 4.5.4, Uppsala: Uppsala Univ., 2010. www.gromacs.org.

    Google Scholar 

  20. Bussi, G., Donadio, D., and Parrinello, M., J. Chem. Phys., 2007, vol. 126, p. 014101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Riccardi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalchuk, K., Riccardi, E., Mehandzhiyski, A. et al. Aggregates of poly-functional amphiphilic molecules in water and oil phases. Colloid J 76, 564–575 (2014). https://doi.org/10.1134/S1061933X1405010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X1405010X

Keywords

Navigation