Skip to main content
Log in

Electrokinetic potential of multilayer carbon nanotubes in aqueous solutions of electrolytes and surfactants

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The effect of electrolytes with single-, double- and triple-charged counterions, as well as cationic (cetyltrimethylammonium bromide) and anionic (sodium dodecyl sulfate) surfactants, on the electrokinetic potential of multiwall carbon nanotubes prepared via catalytic pyrolysis of propylene in a gas phase according to the CCVD technology has been studied. It has been shown that the influence of different electrolytes on the electrophoretic mobility of the nanotubes does not differ essentially from their effect on the behavior of well-studied inorganic dispersed particles; i.e., the dependence of the absolute values of the ζ-potential on the concentration of a 1: 1 electrolyte passes through a maximum and the introduction of double-charged counterions dramatically reduces the ζ-potential, while the addition of triple-charged cations and a cationic surfactant causes charge reversal of the nanotube surface. The adsorption of sodium dodecyl sulfate in a neutral medium increases the negative ζ values; this effect evens out in the presence of an alkali due to a rise in the electrostatic repulsion between surfactant anions and nanotube surface, which bears a high negative charge resulting from the dissociation of surface functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie, X.L., Mai, Y.-W., and Zhou, X.P., Mat. Sci. Eng. R, 2005, vol. 49, p. 89.

    Article  Google Scholar 

  2. Moniruzzman, M. and Winey, K.I., Macromolecules, 2006, vol. 39, p. 5194.

    Article  Google Scholar 

  3. Ma, P.C., Siddiqui, N.A., Marom, G., and Kim, J.K., Composites A, 2010, vol. 41, p. 1345.

    Article  Google Scholar 

  4. Dumée, L., Germain, V., Sears, K., Schütz, J., Finn, N., Duke, M., Cerneaux, S., Cornu, D., and Gray, S., J. Membr. Sci., 2011, vol. 376, p. 241.

    Article  Google Scholar 

  5. Dumée, L.F., Sears, K., Schütz, J., Finn, N., Huynh, C., Hawkins, S., Duke, M., and Gray, S., J. Membr. Sci., 2010, vol. 351, p. 36.

    Article  Google Scholar 

  6. Dumée, L., Sears, K., Schütz, J., Finn, N., Duke, M., and Gray, S., Desalin. Water Treat., 2010, vol. 17, p. 72.

    Article  Google Scholar 

  7. Iijima, S., Nature (London), 1991, vol. 354, p. 56.

    Article  CAS  Google Scholar 

  8. Ma, P.C., Siddiqui, N.A., Mäder, E., and Kim, J.K., Compos. Sci. Technol., 2011, vol. 71, p. 1644.

    Article  CAS  Google Scholar 

  9. Peng, X., Jia, J., Gong, X., Luan, Z., and Fan, B., J. Hazard. Mater., 2009, vol. 165, p. 1239.

    Article  CAS  Google Scholar 

  10. Rausch, J., Zhuang, R.C., and Mäder, E., Composites A, 2010, vol. 41, p. 1038.

    Article  Google Scholar 

  11. Tantra, R., Schulze, P., and Quincey, P., Particuology, 2010, vol. 8, p. 279.

    Article  CAS  Google Scholar 

  12. Hai, C., Fuji, M., Watanabe, H., Wang, F., Shirai, T., and Takahashi, M., Colloids Surf. A, 2011, vol. 381, p. 70.

    Article  CAS  Google Scholar 

  13. Chen, L., Xie, H., Li, Y., and Yu, W., Colloids Surf. A, 2008, vol. 330, p. 176.

    Article  CAS  Google Scholar 

  14. Barany, S., Adv. Colloid Interface Sci., 1998, vol. 75, p. 45.

    Article  CAS  Google Scholar 

  15. Dukhin, S.S. and Derjaguin, B.V., Elektroforez (Electrophoresis), Moscow: Nauka, 1972.

    Google Scholar 

  16. Lyklema, J., Fundamentals of Interface and Colloid Science, New York: Academic, 1995, vol. 2.

  17. Baran, A.A., Dudkina, L.M., and Soboleva, N.M., Kolloidn. Zh., 1981, vol. 43, p. 211.

    CAS  Google Scholar 

  18. Hidalgo-Alvarez, R., Moleon, J.A., De Las Nieves, F.J., and Bijsterbosch, B.H., J. Colloid Interface Sci., 1992, vol. 149, p. 23.

    Article  CAS  Google Scholar 

  19. Barany, S. and Skvarla, J., Colloid J., 2013, vol. 75, p. 129.

    Article  CAS  Google Scholar 

  20. Barany, S., Meszaros, R., Marcinova, L., and Skvarla, J., Colloids Surf. A, 2011, vol. 48, p. 383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Barany.

Additional information

Original Russian Text © S. Barany, N. Kartel’, R. Meszaros, 2014, published in Kolloidnyi Zhurnal, 2014, Vol. 76, No. 5, pp. 555–559.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barany, S., Kartel’, N. & Meszaros, R. Electrokinetic potential of multilayer carbon nanotubes in aqueous solutions of electrolytes and surfactants. Colloid J 76, 509–513 (2014). https://doi.org/10.1134/S1061933X14050020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X14050020

Keywords

Navigation